钢结构普通螺栓连接设计

上传人:公**** 文档编号:590563930 上传时间:2024-09-14 格式:PPT 页数:66 大小:1.82MB
返回 下载 相关 举报
钢结构普通螺栓连接设计_第1页
第1页 / 共66页
钢结构普通螺栓连接设计_第2页
第2页 / 共66页
钢结构普通螺栓连接设计_第3页
第3页 / 共66页
钢结构普通螺栓连接设计_第4页
第4页 / 共66页
钢结构普通螺栓连接设计_第5页
第5页 / 共66页
点击查看更多>>
资源描述

《钢结构普通螺栓连接设计》由会员分享,可在线阅读,更多相关《钢结构普通螺栓连接设计(66页珍藏版)》请在金锄头文库上搜索。

1、1 1、普通螺栓、普通螺栓第五节第五节 普通螺栓连接设计普通螺栓连接设计复习复习 性能等性能等级级的含的含义义:5表示表示fu500N/mm2, , 0.6表示表示fy/fu=0.6如如5.6级级 由由45号、号、40B和和20MnTiB钢加工而成,并经过热钢加工而成,并经过热处理处理45号号8.8级;级; 40B和和20MnTiB10.9级级2 2、高强度螺栓连接、高强度螺栓连接 大六角头螺栓大六角头螺栓 扭剪型螺栓扭剪型螺栓1 1 2 3 2 3 4 41-1-螺栓;螺栓;2-2-垫圈;垫圈;3-3-螺母;螺母;4-4-螺丝螺丝;5-;5-槽口槽口1 1 4 3 54 3 5高强度螺栓分类

2、:高强度螺栓分类: 根据确定承载力极限的原则不同,分为高强度螺栓根据确定承载力极限的原则不同,分为高强度螺栓摩擦型连接和高强度螺栓承压型连接。摩擦型连接和高强度螺栓承压型连接。传力途径传力途径: 摩擦型摩擦型依靠被连板件间摩擦力传力,以摩擦阻依靠被连板件间摩擦力传力,以摩擦阻力被克服作为设计准则。力被克服作为设计准则。 承压型承压型依靠螺栓杆与孔壁承压传力,以螺栓杆依靠螺栓杆与孔壁承压传力,以螺栓杆被剪坏或孔壁被压坏作为承载能力极限状态(破坏时的被剪坏或孔壁被压坏作为承载能力极限状态(破坏时的极限承载力)。极限承载力)。 孔径:孔径:摩擦型连接的高强度螺栓的孔径比螺栓公称摩擦型连接的高强度螺栓

3、的孔径比螺栓公称直径大直径大1.5-2.0mm;承压型连接的高强度螺栓的孔径比;承压型连接的高强度螺栓的孔径比螺栓公称直径大螺栓公称直径大1.0-1.5mm。一、普通螺栓连接构造一、普通螺栓连接构造2.螺栓排列螺栓排列螺栓的排列应简单、统一而紧凑,满足受力要求,构造合螺栓的排列应简单、统一而紧凑,满足受力要求,构造合理又便于安装。理又便于安装。 排列的方式通常分为并列和错列两种形式。排列的方式通常分为并列和错列两种形式。并列并列端距端距中距中距边距边距 中距中距 边边距距错列错列端距端距边距边距 边距边距中距中距3d01.最少螺栓数要求最少螺栓数要求 每一杆件在节点上以及拼接接头一每一杆件在节

4、点上以及拼接接头一 端,螺栓数目不宜少于端,螺栓数目不宜少于2个。个。 并列并列简单整齐,所用连接板尺寸小,但由于简单整齐,所用连接板尺寸小,但由于螺栓孔的存在,对构件截面的削弱较大。螺栓孔的存在,对构件截面的削弱较大。 错列错列可以减小螺栓孔对截面的削弱,但螺栓孔可以减小螺栓孔对截面的削弱,但螺栓孔排列不如并列紧凑,连接板尺寸较大。排列不如并列紧凑,连接板尺寸较大。螺栓排列的要求螺栓排列的要求(1 1)受力要求)受力要求 在垂直于受力方向:对于受拉构件,各排螺栓的中在垂直于受力方向:对于受拉构件,各排螺栓的中距及边距不能过小,以免使螺栓周围应力集中相互影响,距及边距不能过小,以免使螺栓周围应

5、力集中相互影响,且使钢板的截面削弱过多,降低其承载能力。且使钢板的截面削弱过多,降低其承载能力。平行于受力方向:平行于受力方向: 端距应按被连接钢板抗挤压及抗剪切等强度条件确定,端距应按被连接钢板抗挤压及抗剪切等强度条件确定,以便钢板在端部不致被螺栓冲剪撕裂,规范规定端距不应小以便钢板在端部不致被螺栓冲剪撕裂,规范规定端距不应小于于2d0; 受压构件上的中距不宜过大,否则在被连接板件间容易受压构件上的中距不宜过大,否则在被连接板件间容易发生鼓曲现象。发生鼓曲现象。 因此规范从受力的角度规定了最大和最小容许间距因此规范从受力的角度规定了最大和最小容许间距(2 2)构造要求)构造要求 边距和中距不

6、宜过大,中距过大,连接板件间不密实,边距和中距不宜过大,中距过大,连接板件间不密实,潮气容易侵入,造成板件锈蚀潮气容易侵入,造成板件锈蚀. .规范规定了螺栓的最大容规范规定了螺栓的最大容许间距许间距(3 3)施工要求)施工要求 要保证有一定的空间,以便转动扳手,拧紧螺母。要保证有一定的空间,以便转动扳手,拧紧螺母。因此规范规定了螺栓的最小容许间距。因此规范规定了螺栓的最小容许间距。端距端距端距端距中距中距边距边距中距中距3d02d03d01.5d01.5d03d03d02d0端距端距边距边距1.5d0(1.2d0)2d02d01.5d03d0端距端距并列并列并列并列 螺栓或铆钉的最大、最小容许

7、距离螺栓或铆钉的最大、最小容许距离1.2d1.2d0 0其他螺栓或铆钉其他螺栓或铆钉高强度螺栓高强度螺栓轧制边自动精密气割或轧制边自动精密气割或锯割边锯割边1.5d1.5d0 0剪切边或手工气割边剪切边或手工气割边垂直内垂直内力方向力方向2d2d0 04d4d0 0或或8t8t顺内力方向顺内力方向中心中心至构至构件边件边缘距缘距离离沿对角线方向沿对角线方向16d16d0 0或或24t24t拉力拉力12d12d0 0或或18t18t压力压力顺内力方向顺内力方向16d16d0 0或或24t24t垂直内力方向垂直内力方向中中间间排排3d3d0 08d8d0 0或或12t12t外排(垂直内力方向或顺内

8、力方向)外排(垂直内力方向或顺内力方向)中心中心间距间距最小容许最小容许距离距离最大容许距离最大容许距离(取两者中的小值)(取两者中的小值)位置和方向位置和方向名称名称注注:(1)(1)d d0 0 为螺栓孔或铆钉孔直径,为螺栓孔或铆钉孔直径,t t为外层较薄板件的厚度;为外层较薄板件的厚度; (2)(2)钢板边缘与刚性构件钢板边缘与刚性构件( (如角钢、槽钢等如角钢、槽钢等) )相连的螺栓或铆钉的最大间距,可按中间排的数值采用。相连的螺栓或铆钉的最大间距,可按中间排的数值采用。三、三、 螺栓连接的构造要求螺栓连接的构造要求 螺栓连接除了满足上述螺栓排列的容许距离外,根螺栓连接除了满足上述螺栓

9、排列的容许距离外,根据不同情况尚应满足下列构造要求:据不同情况尚应满足下列构造要求: (1 1)为了证连接的可靠性,每个杆件的节点或拼接接头)为了证连接的可靠性,每个杆件的节点或拼接接头一端,永久螺栓不宜少于两个,但组合构件的缀条除外。一端,永久螺栓不宜少于两个,但组合构件的缀条除外。 (2 2)直接承受动荷载的普通螺栓连接应采用双螺帽,或)直接承受动荷载的普通螺栓连接应采用双螺帽,或其他措施以防螺帽松动。其他措施以防螺帽松动。 (3 3)C级螺栓宜用于沿杆轴方向的受拉连接,可用于抗剪级螺栓宜用于沿杆轴方向的受拉连接,可用于抗剪连接情况有:承受静载或间接动载的次要连接;承受静载的连接情况有:承

10、受静载或间接动载的次要连接;承受静载的可拆卸结构连接;临时固定构件的安装连接。可拆卸结构连接;临时固定构件的安装连接。 (4 4)型钢构件拼接采用高强螺栓连接时,为保证接触面紧)型钢构件拼接采用高强螺栓连接时,为保证接触面紧密,应采用钢板而不能采用型钢作为拼接件。密,应采用钢板而不能采用型钢作为拼接件。四、普通螺栓的抗剪连接计算四、普通螺栓的抗剪连接计算 1 1、抗剪连接工作性能、抗剪连接工作性能工作性能工作性能 对图示螺栓连接做抗剪试验对图示螺栓连接做抗剪试验, ,即可得到板件上即可得到板件上a、b两点相对位移两点相对位移和作用力和作用力N的关系曲线,由此曲线可的关系曲线,由此曲线可看出,抗

11、剪螺栓受力经历了四个阶段。看出,抗剪螺栓受力经历了四个阶段。NN/2N/2ba012341234N普通螺栓普通螺栓高强度螺栓高强度螺栓 摩擦传力的弹性阶段摩擦传力的弹性阶段( (0-1段段) ) 直线段直线段连接处于弹性工作阶段;由于对普通螺栓板件连接处于弹性工作阶段;由于对普通螺栓板件间摩擦力较小,故此该阶段很短,可略去不计。间摩擦力较小,故此该阶段很短,可略去不计。 滑移阶段滑移阶段( (1-2段段) ) 水平段水平段摩擦力被克服后,板件间突然产生相对滑移,摩擦力被克服后,板件间突然产生相对滑移,最大滑移量为栓杆和孔壁之间的间隙。最大滑移量为栓杆和孔壁之间的间隙。 栓杆直接传力的弹性阶段栓

12、杆直接传力的弹性阶段( (2-3段段) ) 曲线上升曲线上升段段该阶段主要靠栓杆与孔壁接触传力。栓该阶段主要靠栓杆与孔壁接触传力。栓杆受剪力、拉力、弯矩作用,孔壁则受到挤压。由于连接材杆受剪力、拉力、弯矩作用,孔壁则受到挤压。由于连接材料的弹性以及栓杆拉力增加所导致的板件间摩擦力的增大,料的弹性以及栓杆拉力增加所导致的板件间摩擦力的增大,N-关系以曲线状态上升。关系以曲线状态上升。 弹塑性阶段弹塑性阶段( (3-4段段) ) 荷载继续增加,剪切变形迅速加大,直到连接最荷载继续增加,剪切变形迅速加大,直到连接最后破坏。曲线的最高点后破坏。曲线的最高点“4”所对应的荷载即为普通螺所对应的荷载即为普

13、通螺栓栓抗剪连接的极限荷载。抗剪连接的极限荷载。2 2、抗剪连接的破坏形式、抗剪连接的破坏形式 栓杆被剪坏栓杆被剪坏 破坏条件:栓杆直径较小而板件较厚时破坏条件:栓杆直径较小而板件较厚时N NN N较薄的连接板被挤压破坏较薄的连接板被挤压破坏 破坏条件:栓杆直径较大而板件较薄时破坏条件:栓杆直径较大而板件较薄时 NN板件被拉(压)断板件被拉(压)断 破坏条件:截面削弱过多时破坏条件:截面削弱过多时NN 由于拴杆和扳件的挤压由于拴杆和扳件的挤压是相对的,故也常把这种破是相对的,故也常把这种破坏叫做螺栓承压破坏。坏叫做螺栓承压破坏。板件端部被剪坏板件端部被剪坏 破坏条件:端矩破坏条件:端矩a过小时

14、过小时 构造保证措施:端矩不应构造保证措施:端矩不应小于小于2d0aNN 栓杆弯曲破坏栓杆弯曲破坏 破坏条件:螺栓杆过长时破坏条件:螺栓杆过长时 构造保证措施:栓杆长度不应大于构造保证措施:栓杆长度不应大于5d5d 前三种破坏形式通过计算解决,后两种则通过构造要求保前三种破坏形式通过计算解决,后两种则通过构造要求保证。第证。第种破坏属于构件强度破坏,因此,抗剪螺栓连接的计种破坏属于构件强度破坏,因此,抗剪螺栓连接的计算只考虑算只考虑和和两种形式破坏。两种形式破坏。N/2NN/23.单个普通螺栓的抗剪承载力计算单个普通螺栓的抗剪承载力计算 由破坏形式知抗剪螺栓的承载力取决于螺栓杆受剪和由破坏形式

15、知抗剪螺栓的承载力取决于螺栓杆受剪和孔壁承压孔壁承压(即螺栓(即螺栓承压承压)两种情况。)两种情况。 (1 1)假定螺栓受剪面上的剪应力均匀分布,一个螺栓)假定螺栓受剪面上的剪应力均匀分布,一个螺栓的受剪承载力设计值为:的受剪承载力设计值为:式中式中: nv 受剪面数目,单剪受剪面数目,单剪=1;双剪;双剪=2。 d 螺栓杆公称直径;螺栓杆公称直径; fvb 螺栓的抗剪强度设计值螺栓的抗剪强度设计值,见附录见附录1中的附表中的附表1.3NN/2N/2t2t1t3NNt2t1d d单个螺栓的承压承载力设计值为:单个螺栓的承压承载力设计值为:式中式中 t同一受力方向的承压构件的较小总厚度;同一受力

16、方向的承压构件的较小总厚度; 承压强度设计值,见附录承压强度设计值,见附录1中的附表中的附表1.3。 对双剪:取对双剪:取t1与与t2+t3中较小者中较小者 对单剪:取对单剪:取t1与与t2中较小者中较小者一个普通螺栓的抗剪承载力设计值:一个普通螺栓的抗剪承载力设计值:4.普通螺栓群的抗剪承载力计算普通螺栓群的抗剪承载力计算 (1)普通螺栓群轴心受剪普通螺栓群轴心受剪 试验证明试验证明, ,栓群在轴心受剪时,长度方向上各螺栓的栓群在轴心受剪时,长度方向上各螺栓的受力并不均匀,而是两端大受力并不均匀,而是两端大, ,中间小。中间小。 l l1 1N NN/2N/2N/2N/2平均值平均值图图3.

17、7.2 当当l115d0(d0为孔径为孔径) )时,连接进入弹塑性工作状态后,时,连接进入弹塑性工作状态后,内力发生重分布,各螺栓受力趋于相同,故设计时假定内力发生重分布,各螺栓受力趋于相同,故设计时假定N N 由各螺栓平均分担。由各螺栓平均分担。 即连接所需螺栓数为:即连接所需螺栓数为: 当当l115d0(d0为孔径为孔径) )时,连接进入弹塑性工作状态时,连接进入弹塑性工作状态后,即使内力发生重分布后,即使内力发生重分布, ,各螺栓受力也难以均匀,而是各螺栓受力也难以均匀,而是端部螺栓首先达到极限强度而破坏,然后依次向里破坏。端部螺栓首先达到极限强度而破坏,然后依次向里破坏。由试验可得连接

18、的抗剪强度折减系数由试验可得连接的抗剪强度折减系数与与l1/d0的关系曲线,的关系曲线,我国规范规定:我国规范规定:因此,对普通螺栓的长列连接,所需抗剪栓数为:因此,对普通螺栓的长列连接,所需抗剪栓数为:当当 时,时, 当当 时,时, 以上折减系数同样适用于高强度螺栓或铆钉的长列连接。以上折减系数同样适用于高强度螺栓或铆钉的长列连接。F作用下每个螺栓平均受力,则作用下每个螺栓平均受力,则 (2)普通螺栓群偏心受剪普通螺栓群偏心受剪 eF=F+TOr1x1y1y2N1TxN1TyN1TNt21F作用作用扭矩扭矩T作用作用 栓群在扭矩栓群在扭矩T=Fe作用下,每个螺栓均受剪,按弹性设作用下,每个螺

19、栓均受剪,按弹性设计法计算的基本假设如下:计法计算的基本假设如下: 连接件绝对刚性连接件绝对刚性, , 螺栓弹性;螺栓弹性; 连接板件绕栓群形心转动,各螺栓所受剪力大小连接板件绕栓群形心转动,各螺栓所受剪力大小与该螺栓至形心距离与该螺栓至形心距离ri成正比,方向则与它和形心的连线成正比,方向则与它和形心的连线垂直。垂直。“1 1”号螺栓距形心最远,因此,其所受剪力最大。号螺栓距形心最远,因此,其所受剪力最大。计算公式推导如下:计算公式推导如下: 设各螺栓至螺栓群形心设各螺栓至螺栓群形心O的距离为的距离为r1 、r2 、r3 ,rn,各螺栓承受的分力分别为,各螺栓承受的分力分别为N1T、 N2T

20、、N3T , NnT,根,根据平衡条件得:据平衡条件得: 栓钉受力大小与其到形心的距离成正比,则:故得螺栓i因力矩T而产生的剪力为:在扭矩T作用下的剪力在x、y轴方向的分量:受力最大螺栓受力最大螺栓“1”所受的合力为所受的合力为: :如果如果y13x1,则可假定,则可假定xi=0 , 由此得由此得N1Ty=0,则计算式为:则计算式为: 五、普通螺栓的抗拉连接计算五、普通螺栓的抗拉连接计算1.单个普通螺栓的抗拉承载力单个普通螺栓的抗拉承载力 受拉螺栓的撬力 连接刚度对受拉螺栓的影响普通螺栓抗拉强度设计值只取为普通螺栓抗拉强度设计值只取为螺栓钢材抗拉强度设螺栓钢材抗拉强度设计值的计值的0.8倍倍.

21、单个抗拉螺栓的承载力设计值为单个抗拉螺栓的承载力设计值为:式中式中 de、Ae螺栓的有效直径和有效截面面积,螺栓的有效直径和有效截面面积,要考虑螺纹的要考虑螺纹的 影响,见附录影响,见附录8中的附表中的附表8.1; 螺栓抗拉强度设计值螺栓抗拉强度设计值。 2.普通螺栓群轴心受拉计算普通螺栓群轴心受拉计算 当外力通过螺栓群形心时当外力通过螺栓群形心时, ,一般假定每个螺栓均匀一般假定每个螺栓均匀受力,因此,连接所需的螺栓数为:受力,因此,连接所需的螺栓数为:式中:式中: Ntb为一个螺栓的抗拉承载力设计值为一个螺栓的抗拉承载力设计值 在弯矩在弯矩M作用下,被连接件有顺弯作用下,被连接件有顺弯矩矩

22、M作用方向旋转的趋势,因此螺栓作用方向旋转的趋势,因此螺栓受拉。受拉。N 螺栓群偏心受拉相当于连接承受轴心拉力螺栓群偏心受拉相当于连接承受轴心拉力N和弯矩和弯矩MNe的联合作用。技弹性设计法,根据偏心距的大小的联合作用。技弹性设计法,根据偏心距的大小可能出现小偏心受拉和大偏心受拉两种情况。可能出现小偏心受拉和大偏心受拉两种情况。V V由承托承担由承托承担大偏心受拉大偏心受拉y y1 1y y2 2y y3 3N NN N1 1N N2 2N N3 3O O中和轴中和轴受压区受压区e e小偏心受拉小偏心受拉V VM MN N刨平顶紧刨平顶紧承托(板)承托(板)e e旋转中心旋转中心N Nmaxm

23、axN N2 2N N3 3N Nminmin00N Ny y2 2y y2 2y y1 1y y1 1c cO Oe e3.普通螺栓群偏心受拉(轴心力和弯矩共同作用)计算普通螺栓群偏心受拉(轴心力和弯矩共同作用)计算:剪力剪力V直接通过承托板传递,螺栓受轴心力和弯矩作用直接通过承托板传递,螺栓受轴心力和弯矩作用 ,底排与顶排螺栓受力分别为最小和最大: ,式中 n连接中螺栓总个数; y1“1”号即顶排螺栓到旋转轴的距离; yn“n”号即底排螺栓到旋转轴的距离; yi“i”号螺栓到旋转轴的距离;当由上式算得的Nmin0时,说明所有螺栓均受拉,构件绕栓钉群形心轴旋转,此时应验算满足条件: 以上是当

24、弯矩M较小时,小偏心情况的计算公式计算就会出现Nmin150C时,时,应采取隔热措施,以使连接所应采取隔热措施,以使连接所处温度在处温度在100或或150以下以下3.高强度螺栓抗拉连接高强度螺栓抗拉连接 高强度螺栓在承受外拉力前,螺杆中已有很高的高强度螺栓在承受外拉力前,螺杆中已有很高的预拉力预拉力P,板层之间则有压力,板层之间则有压力C,而,而P与与C维持平衡,维持平衡,即即 C = P图图3.8.4 高强度螺栓受拉高强度螺栓受拉P Pf fC Cf fN Nt tP PC C 当外拉力为当外拉力为Nt时:板件有被拉开趋势,板件间的时:板件有被拉开趋势,板件间的压力压力C减小为减小为Cf,栓

25、杆拉力,栓杆拉力P增加为增加为Pf,根据平衡关,根据平衡关系有系有: :若螺栓和被连接板件保持弹性,板叠厚度为若螺栓和被连接板件保持弹性,板叠厚度为,则,则 螺栓杆的伸长量螺栓杆的伸长量= =板件压缩恢复量板件压缩恢复量Ab栓杆截面面积;栓杆截面面积;Ap板件挤压面面积。板件挤压面面积。 由以上三式,可得由以上三式,可得 当板件即将被拉开时:当板件即将被拉开时: Cf=0,有,有Pf=Nt,因此:,因此: 一般板件间的挤压面面积比栓杆截面面积大许多,一般板件间的挤压面面积比栓杆截面面积大许多,近似取近似取AP/Ab=10,则有:,则有: 当板件即将被拉开时,栓杆的拉力仅增加当板件即将被拉开时,

26、栓杆的拉力仅增加10%。另。另外,试验证明,当栓杆的外加拉力大于外,试验证明,当栓杆的外加拉力大于P时,卸载后螺时,卸载后螺栓杆的预拉力将减小,即发生松弛现象。但当栓杆的预拉力将减小,即发生松弛现象。但当Nt不大于不大于0.8P时,则无松弛现象,这时时,则无松弛现象,这时Pf=1.07P,可认为螺杆的,可认为螺杆的预拉力不变,且连接板件间有一定的挤压力保持紧密接预拉力不变,且连接板件间有一定的挤压力保持紧密接触,所以现行规范规定:触,所以现行规范规定: 在杆轴方向受力的高强度螺栓摩擦型连接中,单个高强度在杆轴方向受力的高强度螺栓摩擦型连接中,单个高强度螺栓抗拉承载力设计值取为:螺栓抗拉承载力设

27、计值取为: 承压型高强度螺栓的单栓抗拉承载力,因其破坏准承压型高强度螺栓的单栓抗拉承载力,因其破坏准则为螺栓杆被拉断,故计算方法与普通螺栓相同,即:则为螺栓杆被拉断,故计算方法与普通螺栓相同,即:式中:式中:Ae螺栓杆的有效截面面积;螺栓杆的有效截面面积; de 螺栓杆的有效直径;螺栓杆的有效直径; ftb高强度螺栓的抗拉强度设计值。高强度螺栓的抗拉强度设计值。4.摩擦型高强度螺栓同时承受剪力和外拉力的连接摩擦型高强度螺栓同时承受剪力和外拉力的连接 当螺栓所受外拉力当螺栓所受外拉力Nt0.8P时,虽然螺杆中的预拉力时,虽然螺杆中的预拉力P P基本基本不变,但板间压力将减小到不变,但板间压力将减

28、小到p-Ntp-Nt。试验研究表明,这时接触面。试验研究表明,这时接触面的抗滑移系数的抗滑移系数也有所降低,而且也有所降低,而且值随值随Nt从的增大面减小。从的增大面减小。现行钢结构设计规范考虑了摩擦力与拉力的相互不利影响,故现行钢结构设计规范考虑了摩擦力与拉力的相互不利影响,故一个摩擦型连接高强度螺栓有拉力作用时,其承载能力应按下一个摩擦型连接高强度螺栓有拉力作用时,其承载能力应按下式计算式计算Nv,Nt某个摩擦型高强度螺栓所承受的剪力和拉力;某个摩擦型高强度螺栓所承受的剪力和拉力; 一个摩擦型高强度螺栓的受剪、受拉承载力设计值。一个摩擦型高强度螺栓的受剪、受拉承载力设计值。5.承压型高强度

29、螺栓同时承受剪力和外拉力的连接承压型高强度螺栓同时承受剪力和外拉力的连接 对于高强度螺栓承压型连接在剪力和拉力共同作用下对于高强度螺栓承压型连接在剪力和拉力共同作用下计算方法与普通螺栓相同,即为防止栓杆剪拉破坏,要求计算方法与普通螺栓相同,即为防止栓杆剪拉破坏,要求将将代入代入可得到常用的习惯表达方式:可得到常用的习惯表达方式:的意义变化为一个摩擦型连接高强度螺栓有拉力作用时的抗的意义变化为一个摩擦型连接高强度螺栓有拉力作用时的抗剪承载力设计值。剪承载力设计值。为了防止孔壁的承压破坏,应满足:为了防止孔壁的承压破坏,应满足:由于在剪应力单独作用下,高强度螺栓对板层间产生强大压紧由于在剪应力单独

30、作用下,高强度螺栓对板层间产生强大压紧力。当板层问的摩擦力被克服力。当板层问的摩擦力被克服,螺杆与孔壁接触时,板件孔前螺杆与孔壁接触时,板件孔前区形成三向应力场,因而承压型连接高强度螺栓的承压强度比区形成三向应力场,因而承压型连接高强度螺栓的承压强度比普通螺栓高得多,两者相差约普通螺栓高得多,两者相差约50%。当承压型连接高强度螺栓受有杆轴拉力时,板层间的压紧力随当承压型连接高强度螺栓受有杆轴拉力时,板层间的压紧力随外拉力的增加而减小,因而其承压强度设计值也随之降低。为外拉力的增加而减小,因而其承压强度设计值也随之降低。为了计算简便,我国现行钢结构设计规范规定,只要有外拉力存了计算简便,我国现

31、行钢结构设计规范规定,只要有外拉力存在,就将承压强度除以在,就将承压强度除以1.2予以降低,而未考虑承压强度设计值予以降低,而未考虑承压强度设计值变化幅度随外拉力大小而变化这一因素。变化幅度随外拉力大小而变化这一因素。兼受剪拉兼受剪拉受拉受拉取二者较小取二者较小值,长列螺值,长列螺栓折减栓折减受剪受剪普通螺栓普通螺栓备注备注计算公式计算公式受力状态受力状态螺栓种类螺栓种类单个螺栓承载力设计值汇总表(一)单个螺栓承载力设计值汇总表(一)兼受剪拉兼受剪拉受拉受拉长列螺栓折长列螺栓折减减受剪受剪摩擦型高摩擦型高强度螺栓强度螺栓备注备注计算公式计算公式受力状态受力状态螺栓种类螺栓种类单个螺栓承载力设计

32、值汇总表(二)单个螺栓承载力设计值汇总表(二)兼受剪拉兼受剪拉受拉受拉取二者较小值,当取二者较小值,当剪切面在螺纹处时剪切面在螺纹处时受剪受剪承压型高承压型高强度螺栓强度螺栓备注备注计算公式计算公式受力状态受力状态螺栓种类螺栓种类单个螺栓承载力设计值汇总表(三)单个螺栓承载力设计值汇总表(三)四、高强度螺栓连接基本计算公式应用四、高强度螺栓连接基本计算公式应用 1 1、高强度螺栓群受轴心力作用抗剪计算、高强度螺栓群受轴心力作用抗剪计算假定各螺栓受力均匀,故所需螺栓数:假定各螺栓受力均匀,故所需螺栓数:(1 1)对于摩擦型连接:)对于摩擦型连接:(2 2)对于承压型连接:)对于承压型连接:或或2

33、 2、高强度螺栓群受扭矩或扭矩、剪力共同作用的抗剪计算、高强度螺栓群受扭矩或扭矩、剪力共同作用的抗剪计算计算方法与普通螺栓相同,计算方法与普通螺栓相同,但应采用高强度螺栓承载力设计但应采用高强度螺栓承载力设计值进行计算值进行计算。 剪力剪力F作用下每个螺栓受力:作用下每个螺栓受力:eF=F+TOr1x1y1y2N1TxN1TyN1TNt21F作用作用扭矩扭矩T作用作用图图3.8.5扭矩扭矩T作用下:作用下:由此可得螺栓由此可得螺栓1的强度验算公式为的强度验算公式为: :摩擦型连接摩擦型连接: :承压型连接承压型连接: :3 3、高强度螺栓群受轴心力作用抗拉计算、高强度螺栓群受轴心力作用抗拉计算

34、假定各螺栓受力均匀,故所需螺栓数:假定各螺栓受力均匀,故所需螺栓数:(1 1)对于摩擦型连接:)对于摩擦型连接:(2 2)对于承压型连接:)对于承压型连接:4 4、高强度螺栓群偏心拉力作用抗拉计算、高强度螺栓群偏心拉力作用抗拉计算 偏心力作用下的高强度螺栓连接,螺栓最大拉力不应大偏心力作用下的高强度螺栓连接,螺栓最大拉力不应大于于0.8P,以保证板件紧密贴合,端板不会被拉开,所以摩擦,以保证板件紧密贴合,端板不会被拉开,所以摩擦型和承压型均可型和承压型均可按普通螺栓小偏心受拉计算,即中和轴位于按普通螺栓小偏心受拉计算,即中和轴位于螺栓群形心螺栓群形心O处,则处,则NMVNOO刨平顶紧刨平顶紧承

35、托(板)承托(板)NNmaxN2N3Oy1Nminy1cy2y2摩擦型高强度螺栓群承受拉力、弯矩和剪力的共同作用摩擦型高强度螺栓群承受拉力、弯矩和剪力的共同作用 时时,由由于弯矩于弯矩M存在,不同位置的螺栓所受的拉力大小不同。如此各存在,不同位置的螺栓所受的拉力大小不同。如此各螺栓的抗剪承载力设计值不同,所受拉力大的承载力小,反之螺栓的抗剪承载力设计值不同,所受拉力大的承载力小,反之亦然。亦然。 即可按下式计算即可按下式计算:5 5、摩擦型高强度螺栓群承受拉力、弯矩、剪力共同作用、摩擦型高强度螺栓群承受拉力、弯矩、剪力共同作用=由由N+由由MNMV(1 1)对于摩擦型连接:)对于摩擦型连接:

36、在在M和和N共同作用下,最外(下)排共同作用下,最外(下)排“1”号螺栓号螺栓所受拉力最大为(中和轴位于螺栓群形心所受拉力最大为(中和轴位于螺栓群形心O处):处):验算方法一:验算方法一:=由由N+由由MNMV图图3.8.8 在在V作用下,各螺栓所受剪力均相同,即为:作用下,各螺栓所受剪力均相同,即为: 在拉、剪共同作用下,对高强度螺栓摩擦型连接的验在拉、剪共同作用下,对高强度螺栓摩擦型连接的验算条件为:算条件为:上式中上式中: : 按按GBJ17-88规范,验算条件为:规范,验算条件为:二者二者等价等价 在弯矩在弯矩M和拉力和拉力N共同作用下,高强螺栓群中各排共同作用下,高强螺栓群中各排螺栓

37、拉力都不相同,即:螺栓拉力都不相同,即: 故对于栓群抗剪强度故对于栓群抗剪强度, ,应按下式进行验算更为合理,应按下式进行验算更为合理,即即 单个螺栓抗剪设计承载力随拉力的增加而减小,有单个螺栓抗剪设计承载力随拉力的增加而减小,有验算方法二:验算方法二:此外,螺栓最大拉力尚应满足:此外,螺栓最大拉力尚应满足: 验算法二计及了螺栓拉力不同对抗剪强度的影响,验算法二计及了螺栓拉力不同对抗剪强度的影响,因此更为经济合理,而验算法一则过于保守。因此更为经济合理,而验算法一则过于保守。即:即: 当当Nti 0时,取时,取Nti 0。式中式中: : 上式中,只考虑螺栓拉力对抗剪承载力的不利影响,上式中,只

38、考虑螺栓拉力对抗剪承载力的不利影响,未考虑受压区板层间压力增加的有利作用,故按该式计未考虑受压区板层间压力增加的有利作用,故按该式计算的结果是略偏安全的。算的结果是略偏安全的。6 6、承压型高强度螺栓群承受拉力、弯矩、剪力共同作用、承压型高强度螺栓群承受拉力、弯矩、剪力共同作用 承压型高强度螺栓的抗剪承载力设计值与普通螺栓计算承压型高强度螺栓的抗剪承载力设计值与普通螺栓计算相同,分螺栓杆抗剪和孔壁承压两部分。相同,分螺栓杆抗剪和孔壁承压两部分。 同时承受剪力和杆轴方向拉力的承压型高强度螺栓,应满足:同时承受剪力和杆轴方向拉力的承压型高强度螺栓,应满足: Nvb 、Ncb 、Ntb一个承压型高强螺栓的抗剪、承压、一个承压型高强螺栓的抗剪、承压、抗拉承载力设计值;抗拉承载力设计值; Nv1、Nt1最危险螺栓受到的剪力、拉力,与摩擦型高最危险螺栓受到的剪力、拉力,与摩擦型高强度螺栓群计算公式相同,即强度螺栓群计算公式相同,即且且 注意:注意:在轴力在轴力N N和弯矩和弯矩M M作用下,中和轴位于螺栓群作用下,中和轴位于螺栓群形心形心O O处。因为预拉力作用,计算时不区分大小偏心,处。因为预拉力作用,计算时不区分大小偏心,这点与普通螺栓计算不同。这点与普通螺栓计算不同。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号