sixsigmatrainingmaterials六西格玛管理培训材料

上传人:夏** 文档编号:584939850 上传时间:2024-09-01 格式:PPT 页数:101 大小:3.26MB
返回 下载 相关 举报
sixsigmatrainingmaterials六西格玛管理培训材料_第1页
第1页 / 共101页
sixsigmatrainingmaterials六西格玛管理培训材料_第2页
第2页 / 共101页
sixsigmatrainingmaterials六西格玛管理培训材料_第3页
第3页 / 共101页
sixsigmatrainingmaterials六西格玛管理培训材料_第4页
第4页 / 共101页
sixsigmatrainingmaterials六西格玛管理培训材料_第5页
第5页 / 共101页
点击查看更多>>
资源描述

《sixsigmatrainingmaterials六西格玛管理培训材料》由会员分享,可在线阅读,更多相关《sixsigmatrainingmaterials六西格玛管理培训材料(101页珍藏版)》请在金锄头文库上搜索。

1、Six 6 6s s s sSigmaSix 6 6s s s sSigma What is Six-SigmaKey TermsSixSigmaAtermcoinedbyMotorolatoexpressprocesscapabilityinpartspermillion.Asixsigmaprocessgeneratesadefectprobabilityof3.4partspermillion(PPM)ChampionAnupperlevelbusinessleaderwhofacilitatestheleadership,implementation,anddeploymentofsi

2、xsigmaphilosophies.BlackBeltAprocessimprovementprojectteamleaderwhoistrainedandcertifiedinsix-Sigmamethodologyandtoolsandwhoisresponsibleforprojectexecution.MaterBlackBeltApersonwhoisan“expert”onSixSigmatechniquesandonproject implementation,masterBlackBelt playakeyroleintrainingandcoachingofBackandG

3、reen Belts.GreenBeltSixSigmarolesimilarinfunctiontoBlackBeltbut lengthoftrainingandprojectscopearereducedtotwoweeksoftraining.Six 6 6s s s sSigmaKey TermsYellowBeltHourlypersonneltrainedinthefundamentalsofsix-sigmawhoassistandsupportinprojectexecution,usualworkwithblackandGreenBelt.ProcessMapAstep-b

4、y-steppictorialsequenceofaprocessshowingprocessinputs,processoutputs,cycletime,reworkoperations,andinspectionpoints.KeyprocessInputsVariable(KPIV)Thevitalfewinputvariables,call“x”sKeyprocessoutputsVariable(KPOV)Theoutputvariables,call“x”sDFMADesignformanufactureandassemble,Amethodologytoreduceproduc

5、tcomplexityanddesignaroundmorecapablecomponents/processesCostofpoorqualityCostassociatedwithProvidingpoorqualityproductsorservices.Canbedivideintofourcostcategories:Appraisal,Scrap,Rework,andfieldComplaint What is Six-SigmaSix 6 6s s s sSigmaWhat is Six-SigmaVisionPhilosophyAggressiveGoalMetric(Stan

6、dardofmeasurement)BenchmarkMethodToolsfor:CustomerfocusBreakthroughImprovementContinuesimprovementPeopleInvolvementSix-SigmaSix-Sigma is a problem solving process used- to produce: Reduced variation in our processes / Products improved RTY , DPU,& DPPM / Reduced cost of poor quality (COPQ) / improve

7、d capacity and productivity $s What is Six-SigmaSix 6 6s s s sSigmaSix-Sigma can be applied to every business functionSix-SigmaDESIGNPURCH.MFGMAINT.QAADMIN.SERVICE What is Six-SigmaSix 6 6s s s sSigmaSix-Sigma Focus :DelightingtheCustomerThroughFlawlessExecutionRapidBreakthroughImprovementAdvancedBr

8、eakthroughToolsthatworkPositiveandDeepCultureChange Real Financial results : Passion +Execution = Fast and Lasting ResultsWho else in the U.S has started Six Sigma Motorola ( 1987 ) Texas Instruments (1988 ) IBM (1990 ) ABB (1993 ) Alliedsignal / Koadk (1994 ) GE (1995 ) Whirlpool ,Bombardier, Polar

9、oid , Siebe & PACCAR ( 1996 / 98 ) What is Six-SigmaSix 6 6s s s sSigmaValueAnalysisConceptEngineeringKJmethodologyQFDProcessMapCauseandeffectmatrixMeasurementsystemanalysiscapabilityanalysisDescriptivestatisticsGraphicaltechniquesBoxPlots/Histograms/Scatterplots/RunchartsParetocharts/checksheets/Ti

10、meseriesplotsStatisticalprocesscontrolchart CorrelationSimplemultipleregressionMulti-VaristudiesTop Tools What is Six-SigmaSix 6 6s s s sSigmaInferentialstatisticsCentrallimittheoremConfidenceintervalFailuremodeandeffectanalysisDesign&ProcessFractionfactorialexperimentsFullfactorialexperimentsRespon

11、sesurfacemethodsTransformationsNormaldistributionSamplesizedeterminationScreeningstudiesStatisticalTolerancingDesignformanufacturabilityDesignforqualityHypothesistestingF-testChi-squaretestTestsfornormalityAnalysisofVarianceTop Tools What is Six-SigmaSix 6 6s s s sSigmaISORequiresSix-SigmaDeliversPr

12、eventionofDefectsallStagesfromDesignthroughservicingOKIdentifyingtheneedforstatisticaltechniquesrequireforestablishing,controllingandverifyingprocesscapabilityandproductcharacterization.OKInvestigationofthecauseofdefectsrelatingtoproduct,processandqualitysystem.OKContinuousimprovementofqualityofprod

13、uctsandservicesOKISO and Six-Sigma What is Six-SigmaSix 6 6s s s sSigmaLeading Six-Sigma In Operations Select the Right project :ClarifyBigPictureusingStrategicPlanEstablishPlant/productivitybaselinePrioritizeprojectsbaseonvalue,resourcesreqdtimingSelectkeyprojectswithleadershipbuy-inCheckaccountabi

14、lity:businessandpersonal Select and train the Right peopleEnsuretherightleadershipandownershipDevelopatrainingplanDedicatetimefortrainingandapplicationEnsuretherightsupportresourcesareavailable What is Six-SigmaSix 6 6s s s sSigmaLeading Six-Sigma In Operations Plan and Implement Six Sigma Improveme

15、nt Plans : MeasureprocessAnalyzeProcessImproveProcessControlprocess Manage for Excellence in operationStayfocusedFrequentlyreviewprocessandremovebarriersCheckrealbusinessimpactContinuouslycommunicateprogressLinktoperformancemanagementandR&R Sustain the GainsImplementeffectivecontrolplansConductregul

16、artrainingfocusedontheprocessReviewquarterlythesixsigmasystemeffectivenessContinuallyidentifyandlunchnewproject What is Six-SigmaSix 6 6s s s sSigmaPhase 0:Define*ScopeandBoundary*DefineDefects*TeamCharterandChampion*Estimated$Impact*LeadershipapprovalPhase 1: Process Measurement*MapprocessandIdenti

17、fyInputsandOutputs*CauseandeffectsMatrix*EstablishMeasurementSystemcapability*EstablishProcessCapabilityBaselineSix Sigma Process Improvement Roadmap What is Six-SigmaSix 6 6s s s sSigmaPhase 11: Process Analysis*CompleteFMEA*PerformMulti-VariAnalysis*IdentityPotentialCriticalInputs*DevelopPlanforNe

18、xtPhasePhase 111: Process Improvement*VerifyCriticalInputs*OptimizeCriticalInputsPhase IV: Process Control*ImplementControlPlan *VerifyLongTermCapability*ContinuouslyImproveProcessSix Sigma Process Improvement Roadmap What is Six-SigmaSix 6 6s s s sSigmaDesign for Six Sigma RoadmapStep1. Define/Meas

19、ureProductCharter,Stage/GateCriteria&MetricsDetermineCustomerneedsDevelopQFDMatrixStep2.AnalysisProductCompleteFMEAReviewDataandPrioritizeKeyInputVariablesPerformGageStudiesonEssentialMeasurementSystems What is Six-SigmaSix 6 6s s s sSigmaDesign for Six Sigma RoadmapStep3. OptimizeProductDefineCriti

20、calInputsusingDOEEvaluateImpactofScaleSensitiveVariablesusingDOEOptimizeProduct/processusingStatisticalTolerancingandDesignforMFGDevelopProcessMapwithKeyInputandOutputVariablesStep4.ControlProductDevelopControlPlanCompleteCapabilityAnalysis/Prediction What is Six-SigmaSix 6 6s s s sSigmaSuggested Pr

21、oject FiltersSignificantlyImprovesDefects/1000,Scrap,WarrantyClaims,TimetoMarket50%reductioninDefects/1000,50%reductioninscrap50%reductioninWarrantyClaims50%improvementinproductlunchcycletimeFocusesonhighimpact/highriskproductSignificantlyreducesfieldinquiresImprovesCustomerService What is Six-Sigma

22、Six 6 6s s s sSigmaProject Status Sheet What is Six-SigmaSix 6 6s s s sSigmaProject Chart What is Six-SigmaSix 6 6s s s sSigma Process Improvement PlanKey TermsKPIVKeyprocessinputvariableorCriticaltoprocess(CTP)variableAssociatedwiththeXsKPOVKeyprocessoutputvariableorCriticaltoQuality(CTQ)Associated

23、withtheYsY=(X1,X2,Xn)TypicalforProcessImprovementControl the existing systemIdentifyInputsthatarenotincontrolandcontrolthemDeliverable:goodProcesscontrolPlanOptimize the existing SystemProcessincontrolbutinputSpecificationarenotoptimumDoesperformedtounderstandtherelationshipsbetweentheXsandtheYsSix

24、6 6s s s sSigmaTypical for Process ImprovementRedesign the existing SystemProcessisoptimizedbutnotproducingcompetitiveproductcharacteristicsLink-upbetweenmanufacturingandTechnologygroupsthekeytosuccessCreate a new SystemProcessisredesignbutstillnotproducingcompetitive productcharacteristicstobenumbe

25、roneinmarketTechnologylinkisstrongesthere Process Improvement PlanSix 6 6s s s sSigmaImprovementStrategiesImprovementStrategiesCharacterizationOptimizationTechnicalBreakthrough2.StatisticalProblem3.StatisticalSolution4.PracticalSolution1.PracticalProblemY=(X1,X2,Xn)OverallApproachOverallApproach Pro

26、cess Improvement PlanSix 6 6s s s sSigmaProcess Improvement RoadmapStep 1: Process Measurement Planprojectandidentifykeyprocessinput/outputvariablesPerformgagestudiesonessentialmeasurementsystemPerformShort-termcapabilitystudiesandevaluatecontrolplanStep11:Process Analysis CompleteFMEAandevaluatecon

27、trolplan CompleteMulti-Varistudiestoidentifypotentialkeyinputs ReviewDataandprioritizekeyinputvariables Process Improvement PlanSix 6 6s s s sSigmaProcess Improvement Roadmap Step111: Process Improvement VerifycriticalinputsusingDOE DeterminetheoptimumoperatingwindowUpdatethecontrolplanStep1V:Proces

28、s control Finalizetheprocesscontrolplan Ongoingverificationofthestabilityandcapabilityoftheprocess Process Improvement PlanSix 6 6s s s sSigmaFourPhasesand8keyToolsFourPhasesand8keyToolsMeasureAnalysis$AdvancedToolsaccelerateResultsImproveControl Process Improvement PlanSix 6 6s s s sSigmaMeasurepro

29、cessMapsMeasurementSystemsCapabilityAnalysisHistogramControlChartAnalyzeCauseandEffectMatrixFMEADesignofExperiments(DOE)Multi-VariStudiesDOE/EvolutionaryoperationsControlPlanStatisticalprocessControlChartsImproveandControl3-6CriticalKPIVs4-8CriticalKPIVs8-10KPIVs10-15KPIVs30-50KPIVsAllXs1st“HitList”

30、ScreenedListFoundCriticalXsControllingCriticalXsDynamics of Process Improvement Plan-The Funnel Effect Process Improvement PlanSix 6 6s s s sSigmaDefiningCTQsBusiness case ( Describes why the project is important to do )Problem and Goal Statement ( Describes what Problem or issue is )Clarifying Cust

31、omer Requirements ( What do you Provide your customers :) Services :Delivery / Order information / repair / technical support Products :Equipment / Invoices / Packing Slips Can be tangible or intangibleProjectDefinition:KeypreparationphaseDEFINEMEASUREANALYZEIMPROVECONTROL Project DefinitionSix 6 6s

32、 s s sSigmaDefiningCTQs( How to find out what the Customer wants? ) Customer surveys Concept engineering Focus groups Quality Function deployment Customer needs mapping Operational Definitions Project Scoping ProjectDefinition:Keypreparationphase DEFINEMEASUREANALYZEIMPROVECONTROL Project Definition

33、Six 6 6s s s sSigma Use for Process MapInputstoCauseandEffectsMatrixInputstoFMEAInputstoControlPlanSummaryInputstoCapabilitySummaryEvaluateexperimentalDesigns-Tracksvariablesstudied-AllowsevaluatedesignsrobustnesstonoisevariablesTwo type of Process MappingProcessmappingforKPIVsandKPOVs-useasfirstste

34、pinsixsigmaprocess-criticalinordertosuccessfullyimproveprocessvariationMappingSix 6 6s s s sSigmaTwo type of Process Mapping ( Continue )“AsIs/CanBe”mapping-excellentmethodforidentifyingnon-valueaddedsteps-necessaryfirststepincycle-timereductionprojects-excellentfordiscreteprocessesAwelldefinedKPIVp

35、rocessmapcanbeusedtodeveloptheAsIs/CanbemapProcess Mapping Steps Identify the process and its external inputs and customer outputsidentifyexternalinputs:rawmaterial/identifyendcustomeroutputs:ifprocessisunderdevelopment,thenuseproductdesignQFDtoidentifyfinalproductspecifications.MappingSix 6 6s s s

36、sSigmaProcess Mapping Steps (Continue ) Identify all steps in the processincludeallvalue-addedandnon-value-addedsteps List key output variables at each stepincludebothprocessandproductoutputvariables List key input variables and classify processinputsascontrollable,noise,orstandardoperatingprocedure

37、sControllableinputs:KPIVsthatcanbechangedtoseetheeffectonKPOVs,sometimescall“Knob”variablesNoiseinputs:inputvariablesthatimpacttheKPOVsbutaredifficultorimpossibletocontrolStandardoperatingprocedures:qualitativevariableswhicharespecifiedinthestandardprocedureforrunningtheprocessCriticalinputs:KPIVsth

38、athavebeenstatisticallyshowntohaveamajorimpactonthevariabilityoftheKPOVsMappingSix 6 6s s s sSigmaPreparing the process MapTeamEffortmanufacturingengineers/lineoperators/linesupervisors/maintenancetechniciansInputstoMappingbrainstormingoperatormanualsengineeringspecificationsoperatorexperience6Ms(ma

39、n,machine,materials,method,environment)Optional Mapping Symbolsyoucanusethesesymbolstohelptheseparatesteps,onlygreenisvalueadded.ProcessSteporOperationStorage/queueQualityCheckorInspectionDecisionTransportormovementMappingSix 6 6s s s sSigmaExample of Detailed MapAnother FormatMappingSix 6 6s s s sS

40、igmaMappingSix 6 6s s s sSigmaMappingSix 6 6s s s sSigmaMappingSix 6 6s s s sSigmaNon-Value Added AnalysisAsIs/CanBeMappingOftenduringthedesignoranalysisofaprocesswefindmanystepswhicharenotvalue-addedDefinitionofvalue-addedCustomerrecognizesthevalueChangestheproductDonelightthefirsttimeRequiredbylaw

41、,regulation,orcontract,orforHS&EorethicalconsiderationsMappingSix 6 6s s s sSigmaAs Is / Can Be Analysishowtoanalyzeaprocessmap-step&/asis/canbeValidatetheprocessmapwitha“walkthrough”bytheentireteam(establishbaseline)Identifyvalue-addedandnecessarystepIdentifyotherstreamliningactivitiestoimproveproc

42、essflowDetermineentitlementanddevelop“canbe“map(considerbenchmarking“best-in-class”/“worldclass”processesValidatecan-bemap/Developimplementation/implementDefinitionsBaseline:theperformanceoftheexistingprocessEntitlement:theperformanceoftheexistingprocess,allowingforonlyvalueaddedandnecessarytasks/ac

43、tivitiesBest-in-class:thebestperformancefortheprocessanywherewithintheindustryWorldclass:thebestperformancefortheprocessanywhereMappingSix 6 6s s s sSigma“As Is / Can Be” Mapping ViewsThereareusually3versionsofeach“AsIs/CanBe”MapWhatyouWantittobe-Whatyoubelieveitis-Whatitactuallyis-NecessaryStepsDef

44、initionAstepmaybenon-value-addedbutnecessaryif:Itisrequiredbylaw,regulation,orcontractItisrequiredforhealth,safety,environmental,orethicalconsiderationsMappingSix 6 6s s s sSigma C & E MatrixCause and Effects MatrixThisisasimpleQFD(QualityFunctionDeployment)matrixtoemphasizetheImportanceofunderstand

45、ingthecustomerrequirements Relatesthekeyinputstothekeyoutputs(customerrequirements)usingtheprocessmapastheprimarysource Keyoutputsarescoredastoimportancetothecustomer KeyinputsarescoredastorelationshiptokeyoutputsResults:ParetoofkeyinputstoevaluateintheFMEAandcontrolPlansResults:Inputintothecapabili

46、tystudystepinthemeasurementphase Results:InputintotheinitialevaluationoftheprocesscontrolplanSix 6 6s s s sSigmaCause & Effect Matrix StepIdentifyCustomerrequirements(outputs)fromProcessMapRankorderandassignpriorityfactortoeachoutputs(usuallyona1to10scale)Identifyallprocessstepsandmaterials(inputs)f

47、romtheprocessMapEvaluatecorrelationofeachinputtoeachoutputlowscale:changesintheinputvariable(amount,quality,etc)havesmalleffectonoutputvariableHighscale:changesintheinputvariablecangreatlyaffect theoutputvariable.Crossmultiplycorrelationvalueswithpriorityfactorsandaddacrossforeachinput C & E MatrixS

48、ix 6 6s s s sSigma C & E MatrixSix 6 6s s s sSigmaNote:ThistableprovidestheinitialinputtotheFMEA.Wheneachoftheoutputvariables(requirements)arenotcorrect,thatrepresentspotentialEFFECTS.Wheneachinputvariableisnotcorrect,thatrepresentsFailureModes.1.ListtheKeyProcessOutputVariables2.Rateeachvariableona

49、1-to-10scaletoimportantancetothecustomer3.ListKeyProcessInputVariables4.Rateeachvariablesrelationshiptoeachoutputvariableona1-to-10scale5.SelectthetopinputvariablestostarttheFMEAprocess;DeterminehoweachselectedinputvarablecangowrongandplacethatintheFailureModecolumnoftheFMEA. C & E MatrixSix 6 6s s

50、s sSigmaLinking the C&E Matrix to other ToolsC&EMatrixCapabilitySummaryFMEAControlPlanSummaryOutputsInputsTheKeyOutputsarelistedandevaluated.KeyInputsareexploredTheKeyInputsareevaluated. C & E MatrixSix 6 6s s s sSigmaThePurposeofthisworksheetistoguideactionsneededtogetstatisticalcapabilitydata.Thef

51、ormaddressesboththeMeasurementsystemsandtheprocesscapability.anyblankspacesinthefromneedtobeaddressesbyactions C & E MatrixSix 6 6s s s sSigmaForeveryinputintheC&EmatrixPareto,aninitialassessmentofthecontrolplanisdone,thishelpspicklowhangingfruitatthefrontendofaprocessimprovementproject C & E Matrix

52、Six 6 6s s s sSigma Failure Mode and Effects AnalysisDefinition - FMEAAstructuredapproachto:-Identifyingthewaysinwhichaproductorprocesscanfail-estimatingtheriskassociatedwithspecificcauses-prioritizingtheactionsthatshouldbetakentoreducetherisk-evaluatingthedesignvalidationplanProductorthecurrentcont

53、rol plan(ProcessPrimaryDirective:Identifywaystheproductorprocesscanfailandeliminateorreducetheriskoffailure Six 6 6s s s sSigma Failure Mode and Effects AnalysisHistoryFirstusedinthe1960sintheAerospaceindustryduringtheApollomissionsIn1974theNavydevelopedMIL-STD-1629regardingtheuseofFMEAInthelate1970

54、s,automotiveapplicationsdrivenbyliabilitycostsLatertheautomotiveindustrysawtheadvantagesofusingthistooltoreducerisksrelatedtopoorquality.Early80s:MicroElectronicIndustrystartedtoapplyFMEAtoassistinimprovingthe“yieldofmemorydevices”.Mid80s:AutomotiveindustriesstartedtoapplyFMEAtothemanufacturingproce

55、sses.90s:TQS9000recommendedadoptionofFMEA.Six 6 6s s s sSigmaWhere do Risk Come FromCumulativeRisk:RawMaterialVariationPoorlydevelopedSpecificationLimitsMeasurementVariation(OnlineandQC)MachineReliabilityVagueWorkmanshipStandardsUnclearcustomerExpectationsPotentialSafetyHazardsPoorcontrolplans&SOPsP

56、oorProcesscapability Failure Mode and Effects AnalysisSix 6 6s s s sSigmaType of FMIEAsSystemusedtoanalyzesystemsandsub-systemsintheearlyconceptanddesignstages.Focusesonpotentialfailuremodesassociatedwiththefunctionsofasystemcausedbythedesign.Design-usedtoanalyzeproductdesignsbeforetheyarereleasedto

57、production.FocusesonProductFunction.Processusedtoanalyzemanufacturingandassemblyprocesses.FocusesonProcessInputs. Failure Mode and Effects AnalysisSix 6 6s s s sSigmaRole of Process FMEAKeytoolofprocessteamtoimprovetheprocessinapreemptivemanner(beforefailureoccur)*ThebestFMEAresultsareNEVERSEEN!Used

58、toprioritizeresourcestoinsureprocessimprovementeffortsarebeneficialtocustomerUsedtodocumentcompletionofprojectsShouldbeadynamicdocument,continuallyreviewed,amended,updated Failure Mode and Effects AnalysisSix 6 6s s s sSigmaPurposes of Process FMEAAnalyzesnewmanufacturingprocessesIdentifiesdeficienc

59、iesintheProcessControlPlanEstablishesthepriorityofactionsEvaluatestheriskofprocesschangesIdentifiespotentialvariablestoconsiderinMulti-variandDOEstudiesGuidesthedevelopmentofnewmanufacturingprocessesHelpssetthestageforbreakthroughFMEA TeamTeamapproachisnecessaryResponsibleManufacturingEngineerleadst

60、heteamRecommendedrepresentatives:DesignQualityReliabilityMaterialsTestingSupplier Failure Mode and Effects AnalysisSix 6 6s s s sSigmaFMEA Inputs and OutputsInputs-ProcessMap-C&EMatrix-ProcessHistory-ProcesstechnicalproceduresOutputs-ListofactionstopreventCausesortodetectFailureModes-HistoryofAction

61、sTaken Failure Mode and Effects AnalysisSix 6 6s s s sSigma FMEA - Step by Step1.ForeachProcessInput,determinethewaysinwhichtheinputcangowrong(TheseareFailuremodes2.ForeachFailuremodeassociatedwiththeinputs,determineEffects:3.IdentifypotentialCausesofeachFailuremode4.ListtheCurrentControlsforeachCau

62、se5.AssignSeverity,OccurrenceandDetectionratingstoeachCause6.CalculateRPN7.DetermineRecommendedActionstoreduceHighRPN8.TakeappropriateActionsandDocument9.RecalculateRPNs Failure Mode and Effects AnalysisSix 6 6s s s sSigmaDefinition of terms - Failure ModeFailureModethewayinwhichaspecificprocessinpu

63、tfails-ifnotdetectedandeithercorrectedorremoved,willcauseeffecttooccur.Canbeassociatedwithadefect(indiscretemanufacturing)oraprocessinputvariablethatgoesOutSideofspecification.AnythingthatanoperatorcanseethatswrongisconsideredaFailureMode.ExampleTemperaturetoohighIncorrectPOnumberSurfacecontaminatio

64、nPitsonsubstratePainttoothin Failure Mode and Effects AnalysisSix 6 6s s s sSigmaForeachcritical(highvalue)processInputdeterminethewaysinwhichtheinputcangowrong(FailureModes)OneareaofhighriskinthemanufacturingprocessIsHeatStakingoftheLatchAssembly,WewillanalyzetheLooseWeld,eventhoughtherearemanymore

65、potentialfailuremodes.ProcessStepKeyProcessInputFailureModesWhatcangowrongEffectsCausesLatchassemblyHeatstakingLooseWeld Failure Mode and Effects AnalysisSix 6 6s s s sSigmaDefinition of Terms Effect Effect-impact on customer requirements ,Generally externalcustomerfocus,butcanalsoincludedownstreamp

66、rocesses.Examples:Temperaturetoohigh:damagecomponentIncorrectPOnumber:AccountsreceivabletraceabilityerrorsSurfacecontamination:PooradhesionPits:InternalopensonsubstratePainttoothin:Poorcoverage Failure Mode and Effects AnalysisSix 6 6s s s sSigmaForeachFailureModeassociatedwiththeinputs,determineEff

67、ectsTheseeffectsareinternalrequirementsforthenextprocessand(or)tothefinalcustomer,Inthiscasewewilllookatoneeffect,eventhoughtherecanbeseveral.ProcessStepKeyProcessInputFailureModesWhatcangowrongEffectsCausesLatchassemblyHeatstakingLooseWeldDoordoesntlatchNote that the relationship between the failur

68、e Mode and the Effect is not always 1-to 1. Failure Mode and Effects AnalysisSix 6 6s s s sSigmaNotethattherelationshipbetweenthefailureModeandtheEffectisnotalways1-to1.Linking Failure Modes to EffectsFailureMode1FailureMode2Effect1FailureMode1Effect1Effect2FailureMode1FailureMode2Effect1 Failure Mo

69、de and Effects AnalysisSix 6 6s s s sSigmaDefinition of Terms - CauseCauseSourcesofprocessvariationthatcausestheFailureModetooccur.Example:Temperaturetoohigh;afaultytemperaturesensor.IdentificationofCausesshouldstartwithFailureModesassociatedwiththehighestseverityratings.ExamplesTemperatureTooHigh:T

70、hermocoupleoutofcalibrationSurfaceContamination:excessfluxfromhandsolderingIncorrectPOnumber:TypographicalerrorPits:Highparticlecountincleanroompainttothin:Highsolventcontent Failure Mode and Effects AnalysisSix 6 6s s s sSigma3. Identify Potential Causes of each Failtre ModeAsinmostcases,wehaveseve

71、ralcausesforonefailuremodeeffectcombinationProcessStepKeyProcessInputFailureModesWhatcangowrongEffectsCausesLatchassemblyHeatstakingLooseWeldDoordoesntlatchMisalignmentofhornWrongweldTemperatureOperatormisalignspartDefinition of Terms Current ControlsCurrentControlsSystematizedmethodsdevicesinplacet

72、opreventordetectfailuremodesorCauses(beforecausingeffects). Failure Mode and Effects AnalysisSix 6 6s s s sSigmaDefinition of Terms Current Controls ( Continue )Preventionconsistsoffoolproofing,automatedcontrolandset-upverificationsControlsconsistsofaudits,checklists,Inspection,laboratorytesting,tra

73、ining,SOPs,Preventivemaintenance,etc.Whichismoreimportanttoprocessimprovement,Preventionordetection?ExamplesThermocoupleortofcalibration:PMofthermocoupleExcessfluxfromhandsoldering:OperatortrainingTypographicalerror:SpellgrammarproofsoftwareHighparticlecountincleanroom:NoneHighsolventcontent:None Fa

74、ilure Mode and Effects AnalysisSix 6 6s s s sSigma4.List the current Controls for each CauseForeachFailureMode/CausewelisthowweareeitherpreventingtheCauseordetectingtheFailureMode,wewilllisttheprocedurenumberwherewehaveaSOPProcessStepKeyProcessInputFailureModesWhatcangowrongEffectsCausesCurrentContr

75、olLatchassemblyHeatstakingLooseWeldDoordoesntlatchMisalignmentofhornAlignmentFixtureWrongweldTemperatureHeatSensorCalibrationOperatormisalignspartNoneThisishowtheFMEAidentifiesinitialholesintheCurrentControlPlan-processteamscanstartworkingontheseholesrightaway Failure Mode and Effects AnalysisSix 6

76、6s s s sSigmaRisk Priority Number ( RPN )TheoutputofanFMEAisthe“RiskPriorityNumber”TheRPNisacalculatednumberbasedoninformationyouprovideregardingthepotentialfairemodes,Theeffects,andThecurrentabilityoftheprocesstodetectthefailuresbeforereachingthecustomerItiscalculatedastheproductofthreequantitative

77、ratings,eachonerelatedtotheeffects,causes,andcontrols:RiskPriorityNumberisnotsacredScalingforSeverity,OccurrenceandDetectioncanbelocallydeveloped.Othercategoriescanbeadded.Forexample,oneBlackbeltaddedanImpactscoretotheRPNcalculationtoestimatetheoverallimpactoftheFailureModeontheprocess. Failure Mode

78、 and Effects AnalysisSix 6 6s s s sSigmaFMEA ModelCauseDetectionFailureMode(Defect)DetectionEffectDetectionPreventionControlMaterialorProcessinputProcessStepExternalcustomerordownstreamprocessstepWhichisabestcase?Whichisaworstcase? Failure Mode and Effects AnalysisSix 6 6s s s sSigmaDefinition of RP

79、N TermsRPN = Severity X Occurrence X Detection Severity(ofEffect)-importanceofeffectoncustomerrequirementscouldalsobeconcernedwithsafetyandotherrisksiffailureoccurs(1=NotSevere,10=VeryLikely)Occurrence(ofCause)frequencywithwhichagivenCauseoccursandcreatesFailureMode.Cansometimesrefertothefrequencyof

80、aFailureMode(1=NotLikely,10=VeryLikely)Detection(capabilityofControls)abilityofcurrentcontrolschemetodetectorPrevent:thecausesbeforecreatingfailuremodethefailuremodesbeforecausingeffect1=LikelytoDetect,10=NotLikelyatalltoDetect Failure Mode and Effects AnalysisSix 6 6s s s sSigmaFMEA ScoringThereare

81、awidevarietyofscoring“anchors”,bothquantitativeorqualitative.Twotypesofscalesare1-5or1-10.The1-5scalesmakeiteasierfortheteamstodecideonscoresThe1-10scaleallowsforbetterprecisioninestimatesandawithvariationinscores.The1-10scaleisgenerallyconsideredtobethebestoption. Failure Mode and Effects AnalysisS

82、ix 6 6s s s sSigmaAlmostcertaindetectionRemote:FailureisunlikelyNoeffect1VeryhighchangeofdetectionMinordefectnoticedbydiscriminatingcustomers2HighchangeofdetectionLow:RelativelyfewfailuresMinordefectnoticedbysomecustomers3ModeratelyhighchangeofdetectionMinordefectnoticedbysomecustomers4Moderatechang

83、eofdetectionReducedsecondaryfunctionperformance5LowchangeofdetectionModerate:OccasionalfailureLossofsecondaryfunction6VerylowchangeofdetectionReducedprimaryfunctionperformance7RemotechangeofdetectionHigh:RepeatedfailuresLossofprimaryfunction8VeryremotechangeofdetectionPermanentdamagetodatawithwarnin

84、g9CannotdetectVeryhigh:FailureisalmostinevitablePermanentdamagetodatawithoutwarning10AbilitytoDetectLikelihoodofOccurrenceSeverityofEffectRatingExample Rating Scale Failure Mode and Effects AnalysisSix 6 6s s s sSigma5.AssignSeverity,OccurrenceandDetectionratingstoeachCause6.CalculateRPNS7.Determine

85、RecommendedActionstoreduceHighRPNsWhattodoaboutthehighRPNs*Reviewresultsandinsights*Determinepotentialnextsteps:Datacollection/Experiments/Processimprovement/ProcesscontrolimplementationsActionsarerecommendedforonlythehighRPNs(ThekeyisFOCUS!)8.TakeappropriateActionsandDocument Failure Mode and Effec

86、ts AnalysisSix 6 6s s s sSigma9. Recalculate RPNsTheFMEAshouldbere-evaluatedbythegroupasnewrecommendedactionsAreidentified,completedandrecorded. Failure Mode and Effects AnalysisSix 6 6s s s sSigmaMethodologyTwomajorapproaches:StartingwithQFD/Cause&EffectMatrixStartingwithFMEAdirectlyfromtheProcessM

87、apApproaches to FMEAsApproachone(C&EMatrixFocus)-StartwithkeyinputswiththehighestscoresfromtheC&EMatrixanalysis-FillouttheFMEAworksheetforthoseinputs-CalculateRPNsanddeveloprecommendedactionsforthehighestROPs-completetheprocessFMEAforotherinputsovertimeApproachtwo(CustomerFocused):-FillouttheFailure

88、ModeandEffectscolumnsoftheworksheet.CopytoFMEAformandrateSeverity.-Forhighseverityratings.listcauseandrateoccurrenceforeachcause-Forthehighestseverity*occurrenceratings,evaluatecurrentcontrols-ForhighestRPNsdeveloprecommendedactions Failure Mode and Effects AnalysisSix 6 6s s s sSigmaApproaches to F

89、MEAs ( continue )ApproachThree(Comprehensive)-Goodapproachforsmallprocesses-FillouttheFMEAworksheetbeginningwiththefirstprocessstepandendingwiththelast-ScoreSEV,OCCandDETforallcauses-DeveloprecommendedactionsforhighestRPNsApproachFour(SuperFocused)-PickthetopParetodefectitemorFailureMode-FocustheFME

90、AprocessononlythatdefectorFailureMode-Purpose:To“kill“thatFailureMode. Failure Mode and Effects AnalysisSix 6 6s s s sSigma Failure Mode and Effects AnalysisSix 6 6s s s sSigma Failure Mode and Effects AnalysisSix 6 6s s s sSigma MSA - GR&RProcedure for performing an R&R study Calibratethegage,orass

91、urethatithasbeencalibratedHavethefirstoperatormeasureallthesamplesonceinrandomorder.Continueuntilalloperatorshavemeasuredthesamplesonce(thisisTrial1)Repeatsteps2-4fortherequirednumberoftrials.UsetheformprovidedtodeterminethestatisticsoftheR&Rstudy.RepeatabilityReproducibilityStandarddeviationsofeach

92、oftheabove%R&R%ToleranceanalysisAnalyzeresultsanddeterminefollow-upaction,ifany.Six 6 6s s s sSigmaRepeatability Thevariationbetweensuccessivemeasurementsofthesamepart,samecharacteristic,bythesamepersonusingthesameinstrument.alsoknownastest-retesterror;usedasanestimateofshort-termvariation.Estimated

93、bythe pooled ( average ) standard deviationofthedistributionofrepeatedmeasurementsReproducibilityThedifferentintheaverageofthemeasurementsmadebydifferentpersonsusingthesameordifferentinstrumentwhenmeasuringtheidenticalcharacteristic.Goodreproducibility:theshiftamongdifferentoperatorsarelittle.Poorre

94、producibility:theshiftamongdifferentoperatorsaremore. MSA - GR&RSix 6 6s s s sSigmaPrecision to tolerance Ratio P/ T=5.15*MS / ToleranceAddresseswhatpercentofthetoleranceistakenupbymeasurementerror.Bestcase:10%Acceptable:30%IncludesbothrepeatabilityandreproducibilityOperatorxUnitxTrialexperimentTheP

95、/Tratio(%ToleranceInMinitab)isthemostcommonestimateofMeasurementsystemprecision.Thisestimatemaybeappropriateforevaluatinghowwellthemeasurementsystemcanperformwithrespecttospecifications.Specifications,however,maybetootightortooloose.Generally,theP/Tratioisagoodestimatewhenthemeasurementsystemisonlyu

96、sedtoclassifyproductionsamples.Eventhen,ifprocesscapability(Cpk)isnotadequate,theP/Tratiomaygiveyouafalsesenseofsecurity. MSA - GR&RSix 6 6s s s sSigma %R&R= MS / Total x 100%Addresseswhatpercentofthetotalvariationistakenupbymeasurementerror.IncludesbothrepeatabilityandreproducibilityOperatorxUnitxT

97、rialexperimentAsatarget,lookfor%R&R30%The%R&RisthebestmeasurefortheprocessimprovementleaderThisestimateshowwellthemeasurementsystemperformswithrespecttotheoverallprocessvariation%R&Risthebestestimatewhenperformingprocessimprovementstudies.IfCp0=1.0,then%R&R70%If1.0Cp01.5,then%R&R=1.5,then%R&R15Ifnot

98、practicalorpossible,choosenumberoftrialssothat:ifS*O4,trials=6 ifS*O5,trials=5ifS*O8,trials=4 ifS*O Quality Tools Gage R&R Study OR Gage Run Chart( Number of Distinct Categories must be at least 4 for Process Improvement use ) MSA - GR&RSix 6 6s s s sSigma SPCHow Do We Manage Data - Today SPCS=Stati

99、sticaltechniquesusedtoexamineprocessvariationP=Process,ANYProcessC=Controllingtheprocessthroughactivemanagement Where Did SPC Come From ?1920s-WesternElectric/Dr.WaltershewhartUsedtoidentifycontrolled&uncontrolledvariationalsoknownascommon&specialcausesTriestofindtheprocesssignalsinallofthenoiseUses

100、controlchartasmaintoolSix 6 6s s s sSigmaCauseCommon Cause ( Noise )IspresentineveryprocessIsproducedbytheprocessitselfCanberemovedand/orlessenedbutrequiresafundamentalchangeintheprocessSpecial Cause ( signals )Existsinmostoperations/processCausedbyuniquedisturbancesoraseriesofthemCanberemoved/lesse

101、nedbybasicprocesscontrolandmonitoring SPCSix 6 6s s s sSigmaTwo general kinds of DataAttribute - Thedataisdiscrete(COUNTED).ResultsFromusinggo/no-gogages,orfromtheinspectionofvisualdefects,visualproblems,missingparts,orfrompass/failoryes/nodecisionsVariables - Thedataiscontinuous(measured).Resultsfr

102、omtheactualmeasuringofacharacteristicsuchas diameterofahose,electricalresistance,ect. SPCSix 6 6s s s sSigmaChoosing the correct control chartWhattypeofdata?ContinuousDatacollectedingroupsorindividuals?X-BarRX-BarSGroups(Averages)IndividualsmovingrangeDiscreteCountingspecificdefectsordefectiveitems?

103、IstheprobabilityofAdefectLowPoissondistributionSpecifictypesof“Defects”Ifyouknowhowmanyarebad,doyouknowhowmanyaregood?BinomialdistributionDefectiveItemsAreaofOpportunityconstantineachsamplesizeyesIndividualsmovingrangeNoNoConstantsamplesize?yesU-ChartC-ChartNoyesP-ChartNP-ChartNoyes SPCSix 6 6s s s

104、sSigmaDetecting Lack of control“Rulesoftheroad”Startwithrule#1andpatternDetectionrulesIfhighsensitivityisneed,gowith#2,3,&4Rule#1:OnepointoutsidetheUCLorLCL(3-sigmalimit)Rule#2:Twoofthreeconsecutiveoutsidethe2-sigmalimitRule#3:Fouroffiveconsecutiveoutsidetheone-sigmalimitRule#4:Eightconsecutiveonone

105、sideofthecenterlinePatternRule:APatternrepeatsitselfRuntheMinitabmacrosInRuntheMinitabmacrosInStat Control Charts X-Bar - (Open Tests choose Rules ) SPCSix 6 6s s s sSigma CapabilitySteps to a Capability Study1.Setuptheprocesstoyour“bestguess”bestsetupandrecordthevaluesofyoukeyprocessinputvariables.

106、2.Identifyareasonablewaytocreaterationalsubgroups.3.Runtheproductoverashortperiodoftimetominimizetheimpactofspecialcausevariationaspossible.Approximately30timepointsarethetargetfordatacollection.4.Haveyourteamcarefullyobservetheprocessandtakeplentyofnotes.5.Measureandrecordvaluesforthekeyprocessoutp

107、utvariableSix 6 6s s s sSigmaSteps to a Capability Study6.RuncapabilitySix-packandreview:NormalPlotSPCCharts(checkforstability,Accuracy)Histogram7.RuntheCapabilityMacroforboththepooledandtheoverallstandarddeviations.Completetheworksheet.8.DiagnoseforMeanShiftandVarianceinflation9.EstimateLong-TermCa

108、pability10.Developactionplanbasedondiagnostics. CapabilitySix 6 6s s s sSigmaCapability summary SheetManytimeyouwillbeinterestedinthecapabilityofmorethanonekeyoutputorkeyinputvariable.Usethecapabilitysummarysheettotrackthestatusonthevariablesofinterest. CapabilitySix 6 6s s s sSigmaTypesofCapability

109、Indexes Instantaneous Capability :ProcessCapabilityoveranextremelyshortperiodoftime.Thisshouldrepresenttheverybestperformaprocessiscapableofoverashorttime.Thisshouldbeacloseestimateofprocessentitlement.canbeestimatedusingthe“bestrun”ofashort-termorlong-termstudy. Short-Term Capability : capabilityst

110、udybasedon3050datapoints.Usuallyequaltoorgreaterthanlong-termcapabilitylong-Term Capability : CapabilitystudybasesonalargenumberofdatapointsBestestimateoftrueprocesscapabilityDiagnosticscanbemadefromthisdata CapabilitySix 6 6s s s sSigmaGoal SettingThis is a generic sequence of process improvement :

111、Near Term Goal : MovethePpktoPp(Centertheprocess)Mid Term Goal : MovethePptoCpk(reduceVariation)Long-Term Goal : MoveCpktoCp(RandomVariation)Answers to Capability Questions Describe dynamics and actions for the following scenarios :Cp 1.00 Inherentrandomvariabilityissmallenoughfortheprocesstoconsist

112、entlymeetcustomerspec Cp 1.00 Inherentrandomvariabilitytolarge.Processchangerequired CapabilitySix 6 6s s s sSigmaAnswers to Capability Questions Describe dynamics and actions for the following scenarios :Ppk Cp Therearespecialcauseshiftsanddriftsthatdrivevariabilityoverandaboverandomvariation.Impro

113、vedcontrolisthefocus. Ppk is close to Cp Process in good state of statistical control Cp 1.00 and Ppk Cp Boyareyouintroublenow,EliminatespecialcauseandinvestigatepotentialimpactofAPC(Automatedprocesscontrol) CapabilitySix 6 6s s s sSigmaAnswers to Capability Questions ( Continued ) Cp 1.00 and Ppk 1

114、.00 and Ppk is close to CpLittleopportunityforimprovement CapabilitySix 6 6s s s sSigmaPerformance and Capability MatrixDoes Capability meet Customer Needs ?Does Performance meet capabilityChange ProcessImprove ControlChange ProcessImprove ControlLittle Opportunity for ImprovementNo ( Ppk Cp )Yes (P

115、pk = Pk )No ( Cp Goal )CpPpCpkPpkVariabilityBest Possible Actual ( Total )Location of process MeanMidpoint of Spec RangeActual CapabilitySix 6 6s s s sSigmaProcess Performance and Capability ProcessPerformance:TotalVariationincludingshiftsanddrifts.Istheprocesses“real”performance(PpandPpk)Capability

116、:Onlyrandomorshorttermvariability,isthe“Potential”oftheprocess(CpandCpk)ThePpkcancloselyapproachtheCpk,When:TheCustomerspecificationstrulyreflectcustomerrequirementsTheprocessinunderstatisticalcontrolThedataapproximatethenormaldistributionTheCpislikeabenchmarkorentitlementTheSigmaforcapabilityisdriv

117、enprimarilybyrandomerrorWewouldlikePpktobeveryclosetoCpStatisticalprocesscontrol(SPC)isthefirststepAutomatedprocesscontrol(APC)isnextifnecessary CapabilitySix 6 6s s s sSigmaDiagnosing Capability Data ( 1 )UsingMinitabsCapability,wecantellalotaboutthedynamicsofaprocess.Atleastfourgeneralsourcesofvar

118、iationcanoccurwithanyprocess:1.ChronicMeanShift:whenthemeanshiftsandstayshifted.2.AcuteMeanShifts:whenthemeanofthesubgroupsshiftforshortperiodsoftime3.Withinsubgroupchangesinvariationovertime4.Chronicchangesinvariation:whenvariationwithinsubgroupsgraduallygetslargerorsmallerovertime CapabilitySix 6

119、6s s s sSigmaDiagnosing Capability Data ( 2 )WecanpickupthesepatternsfrominvestigatingdifferenceCpsandCpk”swhenusingthepooled and overall standard deviations ( if subgroup size = 1 ,choose Average moving Range )WecanalsoseepatternsbetweenandwithinsubgroupsusingtheCapabilitySixpacksgraphs Go to Stat

120、Quality Tools Capability Analysis ( Normal ) or Capability Sixpack ( Normal ) CapabilitySix 6 6s s s sSigmaFinal Report FormatSix Sigma Black belt Report OutlineThe following is a generic final report format Blackbelt will submit to their Six Sigma Champions and the Director, Six Sigma Implementatio

121、n. The format may be modified based on individual projects.I. IntroductionA. Team AcknowledgmentB. Executive Summary1. Problem Description2. Solution Strategy3. Summary of Six Sigma Tools4. Results and ConclusionsSix 6 6s s s sSigmaII. Measurement PhaseA. Process DescriptionB. Process MapC. Cause &

122、Effects Matrix SummaryD. Measurement Studies (Abstracts)E. Capability Studies (Abstracts)1. Short-Term Estimates2. Long-Term EstimatesF. Summary of Measurement PhaseIII. Analysis PhaseA. Multi-vari Studies (Abstracts)B. FMEA SummaryC. Rifle Shot Studies (Abstracts)C. Summary of Analysis PhaseFinal R

123、eport FormatSix 6 6s s s sSigmaFinal Report FormatIV.Improvement PhaseA. Experiments (Abstracts)1. Objective2. Output Variables3. Input Variables and Design4. Results and ConclusionsV.Control PhaseA. Summary of Control Plan DevelopmentB. Control Plan Summary SheetC. Documented Sustainability1. Trend Charts2. Summary DataVI. Summary of Tools UsedVII. Summary of ResultsA. Six Sigma Metric ImprovementB. Business impact in Dollars

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号