零件参数的设定

上传人:M****1 文档编号:584934134 上传时间:2024-09-01 格式:PPT 页数:29 大小:592.52KB
返回 下载 相关 举报
零件参数的设定_第1页
第1页 / 共29页
零件参数的设定_第2页
第2页 / 共29页
零件参数的设定_第3页
第3页 / 共29页
零件参数的设定_第4页
第4页 / 共29页
零件参数的设定_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《零件参数的设定》由会员分享,可在线阅读,更多相关《零件参数的设定(29页珍藏版)》请在金锄头文库上搜索。

1、1数学建模实验王汝军王汝军河西学院数学与统计学院河西学院数学与统计学院2实验十五零件参数的设定实验十五零件参数的设定王汝军王汝军河西学院数学与统计学院河西学院数学与统计学院实验目的实验目的1了解随机模拟法(即了解随机模拟法(即Monte Carlo法)的基本原法)的基本原理。理。2学习随机模拟变量产生的基本方法,初步培养随学习随机模拟变量产生的基本方法,初步培养随机模拟的建模思想。机模拟的建模思想。3学习掌握学习掌握MATLAB软件中随机模拟的相关命令。软件中随机模拟的相关命令。3实验内容实验内容 一件产品由若干个零件组装而成,标一件产品由若干个零件组装而成,标志产品性能的某个参数取决于这些零

2、件的志产品性能的某个参数取决于这些零件的参数。零件参数包括标定值和容差两部分。参数。零件参数包括标定值和容差两部分。进行成批生产时,标定值表示一批零件该进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其参数的平均值,容差则给出了参数偏离其标定值的容许范围。若将零件参数视为随标定值的容许范围。若将零件参数视为随机变量,则标定值代表期望值,在生产部机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常视为标准差的门无特殊要求时,容差通常视为标准差的3倍。倍。4实验内容实验内容n粒子分离器某参数(记作粒子分离器某参数(记作 y)由)由7个零件的个零件的参数(记作参数(记作

3、x1 ,x2 ,x7 )决定,经验公)决定,经验公式为式为5实验内容实验内容n当各零件组装成成品时,如果产品参数偏离当各零件组装成成品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏预先设定的目标值,就会造成质量损失,偏离越大,损失就越大。离越大,损失就越大。y 的目标值(记作的目标值(记作 y0)为)为1.50,当,当 偏离偏离y 0.1时,产品为次品,时,产品为次品,质量损失为质量损失为1000(元);当(元);当 偏离偏离 0.3时,时,产品为废品,质量损失为产品为废品,质量损失为9000(元)。给(元)。给定某设计方案定某设计方案7个零件参数标定值及容差,个零件参数标定值及容

4、差,如表如表1 所示:容差分为所示:容差分为A、B、C三个等级,三个等级,用与标定值的相对乘积值表示,用与标定值的相对乘积值表示,A等为等为 1%,B等为等为 5%,C等为等为 15%6实验内容实验内容x1x2x3x4x5x6x7标定值0.20.30.10.11.5160.75容差BBBCCBB7表表1零件参数标定值和容差零件参数标定值和容差求每件产品的平均损失。求每件产品的平均损失。实验准备实验准备在现实生活中,有大量问题由于模型中随机因素很多,在现实生活中,有大量问题由于模型中随机因素很多,很难用解析式模型来进行描述求解,这时就需要借助很难用解析式模型来进行描述求解,这时就需要借助模拟的方

5、法。随机模拟法也叫模拟的方法。随机模拟法也叫Monte Carlo法,它是法,它是用计算机模拟随机现象,通过大量仿真实验,进行分用计算机模拟随机现象,通过大量仿真实验,进行分析推断,特别是对一些复杂的随机变量,不能从数学析推断,特别是对一些复杂的随机变量,不能从数学上得到它的概率分布,而通过简单的随机模拟便可得上得到它的概率分布,而通过简单的随机模拟便可得到近似解答。象这类大容量的仿真实验,如果用实物到近似解答。象这类大容量的仿真实验,如果用实物来做,需要大量人力物力且可能无法实现,但如果我来做,需要大量人力物力且可能无法实现,但如果我们有了问题的数学模型,用计算机模拟就轻而易举了。们有了问题

6、的数学模型,用计算机模拟就轻而易举了。由于由于Monte Carlo法计算量大,精度不是很高,因而法计算量大,精度不是很高,因而适合一些用解析方法或常规数值方法难以解决问题的适合一些用解析方法或常规数值方法难以解决问题的低精度求解,或用于对一些计算结果的验证。低精度求解,或用于对一些计算结果的验证。8实验准备实验准备n1随机模拟的一些基本概念随机模拟的一些基本概念n自然界发生的现象可分为两类,一类现象在一定条件下自然界发生的现象可分为两类,一类现象在一定条件下发生的结果是完全可以预知的,称为必然现象。另一类发生的结果是完全可以预知的,称为必然现象。另一类现象发生的结果在事先是无法准确预知的,称

7、为偶然现现象发生的结果在事先是无法准确预知的,称为偶然现象或随机现象。下面两个试验都是随机现象:象或随机现象。下面两个试验都是随机现象:n试验一:有试验一:有10枚均匀硬币,随手抛在地上,有几枚正面枚均匀硬币,随手抛在地上,有几枚正面向上?向上?n试验二:按身份证号码随意挑试验二:按身份证号码随意挑10个中国女子,他们的平个中国女子,他们的平均体重是多少?均体重是多少?9实验准备实验准备10n尽管随机现象的发生结果是不确定的,但还是有一定的规尽管随机现象的发生结果是不确定的,但还是有一定的规律可循:试验一中正面向上的枚数一定是律可循:试验一中正面向上的枚数一定是010,5枚向枚向上的可能性比上

8、的可能性比8枚向上的可能性要大;试验二中平均体重枚向上的可能性要大;试验二中平均体重基本在基本在40kg到到70kg之间,且在之间,且在45kg左右的可能性比左右的可能性比65kg左右的可能性要大。左右的可能性要大。n一个随机事件一个随机事件A发生的可能性的大小,用一个介于发生的可能性的大小,用一个介于0与与1之之间的数表示,称为间的数表示,称为A的概率,记为的概率,记为P(A) 。概率的意义在。概率的意义在类似的现象大量重复发生时会表现出来。比如,在试验一类似的现象大量重复发生时会表现出来。比如,在试验一中若中若 P(5枚向上)枚向上)0.25,那么意味着,那么意味着“若把试验一做若把试验一

9、做100遍,大致有遍,大致有25次左右出现次左右出现5枚向上的情况枚向上的情况。”实验准备实验准备11在随机现象中,变量的取值往往是不确定的,称为在随机现象中,变量的取值往往是不确定的,称为随机变量。描述随机变量取各种值的概率函数称为随机变量。描述随机变量取各种值的概率函数称为概率分布。对于随机变量,通常主要关心它的两个概率分布。对于随机变量,通常主要关心它的两个主要数字特征:数学期望用于描述随机变量的平均主要数字特征:数学期望用于描述随机变量的平均值,方差和标准差用于描述随机变量分布的差异程值,方差和标准差用于描述随机变量分布的差异程度。另外,协方差和相关系数用于描述两个随机变度。另外,协方

10、差和相关系数用于描述两个随机变量的线性关联程度。(数字特征的定义跟前面实验量的线性关联程度。(数字特征的定义跟前面实验定义的一致,且均能在概率统计的书籍中查找相关定义的一致,且均能在概率统计的书籍中查找相关定义)定义).实验准备实验准备n随机变量的分布,根据其取值特点不同主要分随机变量的分布,根据其取值特点不同主要分为离散型和连续型两类。若用变量为离散型和连续型两类。若用变量 表示试验表示试验一一“正面向上次数正面向上次数”,其取值可能为,其取值可能为0,1,2,10(离散点集),则为离散型随机变(离散点集),则为离散型随机变量。典型的离散型分布有二项分布、量。典型的离散型分布有二项分布、Po

11、isson分布等。若用变量分布等。若用变量 表示试验二中表示试验二中“平均体重平均体重”,其取值可能为,其取值可能为30,80中的任何值,中的任何值,则为连续型随机变量。典型的连续型分布有则为连续型随机变量。典型的连续型分布有均匀分布、正态分布、指数分布、均匀分布、正态分布、指数分布、 x2分布、分布、 t分布、分布、 F分布等。分布等。12实验准备实验准备132、模拟随机数的产生、模拟随机数的产生为了产生具有一定分布的随机数,一般采用一为了产生具有一定分布的随机数,一般采用一定的生成程序。首先要有一个等概率密度随机定的生成程序。首先要有一个等概率密度随机数发生器,一般计算机上都有专门的程序,

12、产数发生器,一般计算机上都有专门的程序,产生生01之间等概率密度分布的随机数,使用时之间等概率密度分布的随机数,使用时直接调用即可;此直接调用即可;此01之间的随机数进行一定之间的随机数进行一定的数字转换即可获得所要求的随机数,怎样进的数字转换即可获得所要求的随机数,怎样进行数字转换则视所要求的分布函数来定。行数字转换则视所要求的分布函数来定。假定将假定将0,1区间的均匀随机数记区间的均匀随机数记作作R ,则,则a ,b区间的均匀随机数可按下述公式由区间的均匀随机数可按下述公式由0,1区间的均匀随机数产生区间的均匀随机数产生: x=a+R(b-a)实验准备实验准备14n逆转换法逆转换法n这是求

13、概率分布的逆函数从而产生随机数的方这是求概率分布的逆函数从而产生随机数的方法。因概率分布函数法。因概率分布函数F(x)为定义在为定义在0,1区间的区间的单调递增函数,设单调递增函数,设 R为区间为区间0,1的均匀随机变的均匀随机变量,令量,令 F(x)R ,只要求出逆函数,只要求出逆函数x F-1(R), x即为具有概率分布函数即为具有概率分布函数 F(x)的随机数。的随机数。n组合法组合法n组合法是利用某些容易产生随机数数列的随机变量,组合法是利用某些容易产生随机数数列的随机变量,通过组合得到所要求的随机变量的一种方法。通过组合得到所要求的随机变量的一种方法。实验准备实验准备15n近似法近似

14、法n这种方法一般用于随机变量的分布函数这种方法一般用于随机变量的分布函数无法求出的情形。此时可运用大数定理,当无法求出的情形。此时可运用大数定理,当样本数量趋于无穷时,样本平均值趋向于总样本数量趋于无穷时,样本平均值趋向于总体平均值,它是数字特征随机模拟的理论根体平均值,它是数字特征随机模拟的理论根据。据。实验准备实验准备16max,minmeanmedianstdcovcorrcoef3与随机数相关的与随机数相关的MATLAB命令命令最大值,最小值最大值,最小值均值均值中值中值标准差标准差协方差矩阵协方差矩阵相关系数矩阵相关系数矩阵sumcumsumprodcumprodbarhist各元素

15、和各元素和各元素累计和各元素累计和各元素积各元素积各元素累计积各元素累计积直方图直方图数据分组及直方图数据分组及直方图数据分析函数数据分析函数数据分析函数数据分析函数maxmax,minmin,meanmean,medianmedian,stdstd,covcov,sumsum,prodprod,cumprodcumprod等标准用法都是对列状数据进行的。等标准用法都是对列状数据进行的。等标准用法都是对列状数据进行的。等标准用法都是对列状数据进行的。barbar(Y Y)作向量)作向量)作向量)作向量Y Y的直方图;的直方图;的直方图;的直方图;barbar(X X,Y Y)作向量)作向量)作

16、向量)作向量Y Y相对于相对于相对于相对于X X的直方图;的直方图;的直方图;的直方图;histhist(X X,k k)将向量)将向量)将向量)将向量X X中数据等距分为中数据等距分为中数据等距分为中数据等距分为k k组,并作出直方图,组,并作出直方图,组,并作出直方图,组,并作出直方图,缺省值为缺省值为缺省值为缺省值为k k1010;有关它们更详细的内容可查阅帮助文件。有关它们更详细的内容可查阅帮助文件。有关它们更详细的内容可查阅帮助文件。有关它们更详细的内容可查阅帮助文件。实验准备实验准备17R = rand( m , n )生成生成0,1区间上均匀分布的区间上均匀分布的m行行n列随机矩

17、阵;列随机矩阵;R = randn( m , n ) 生成标准正态分布的生成标准正态分布的m行行n列随机矩阵;列随机矩阵;R = randperm( N ) 生成生成1,2,N的一个随机排列;的一个随机排列;R = unidrnd( N , m , n ) 生成生成1,2,N的等概率的等概率m行行n列随机矩阵;列随机矩阵;R = unifrnd( a , b , m , n )生成生成a,b区间上均匀分布的区间上均匀分布的m行行n列随机矩阵;列随机矩阵;R = normrnd( mu , sigma , m , n )生成均值为生成均值为mu,标准差为,标准差为sigma的的m行行n列列正态分

18、机随机数矩阵;正态分机随机数矩阵;R = binornd( k , p , m , n )生成参数为生成参数为k,p的的m行行n列正态分机随机数矩阵,它列正态分机随机数矩阵,它模拟在模拟在k次重复试验中某事件(发生概率为次重复试验中某事件(发生概率为p)出现的次数;)出现的次数;R = mvnrnd( mu , sigma , m )生成生成n维正态分布数据,这里维正态分布数据,这里mu为为n维均值向量,维均值向量,sigma为为n阶协方差矩阵(它必须是正定的),阶协方差矩阵(它必须是正定的),R为为mn矩阵,每行代表一个随机数。矩阵,每行代表一个随机数。R = poissrnd (mu ,

19、m , n )生成均值为生成均值为mu的的m行行n列泊松分布的随机数矩阵;列泊松分布的随机数矩阵;可以通过帮助文件查阅上述命令的详细内容。可以通过帮助文件查阅上述命令的详细内容。随机数生成采用下面命令形式:随机数生成采用下面命令形式:随机数生成采用下面命令形式:随机数生成采用下面命令形式:实验方法与步骤实验方法与步骤181MATLAB命令的基本用法命令的基本用法下面用几个例子来予以说明:下面用几个例子来予以说明: data=13 76 356;11 89 278;10 86 302;8 92 362;15 69 311;14 83 299;11 73 336; max(data)ans = 1

20、5 92 362 mean(data)ans = 11.7143 81.1429 320.5714 sum(data)ans = 82 568 2244实验方法与步骤实验方法与步骤19 std(data)ans = 2.4300 8.6300 31.4211 prod(data)ans = 1.0e+017 * 0.0000 0.0002 3.3805 cov(data)%将三列看成三个随机变量将三列看成三个随机变量ans = 5.9048 -15.1190 -22.9762 -15.1190 74.4762 -34.4286 -22.9762 -34.4286 987.2857实验方法与步骤

21、实验方法与步骤 corrcoef(data)%将三列看成三个随机变量将三列看成三个随机变量ans = 1.0000 -0.7210 -0.3009 -0.7210 1.0000 -0.1270 -0.3009 -0.1270 1.000020实验方法与步骤实验方法与步骤21n bar(data)%作向量作向量data的直方图的直方图引例问题的分析求解引例问题的分析求解22n在这个问题中,主要的困难是产品的参数在这个问题中,主要的困难是产品的参数值值y 是一是一个随机变量,而个随机变量,而由于由于y与与各零件参数间是一个复杂各零件参数间是一个复杂的函数关系,无法解析地的函数关系,无法解析地得到得

22、到y的的概率分布。本实概率分布。本实验可以考虑采取随机模拟的方法计算。其基本思路验可以考虑采取随机模拟的方法计算。其基本思路是:用计算机模拟工厂生产大量是:用计算机模拟工厂生产大量“产品产品”(如(如1000件),计算产品的总损失,从而得到每件产件),计算产品的总损失,从而得到每件产品的平均损失。品的平均损失。n对于大样本容量的随机变量,我们可以假设对于大样本容量的随机变量,我们可以假设7个零件参数均服从正态分布。根据题设里标定值和个零件参数均服从正态分布。根据题设里标定值和容差的定义,我们可以得到容差的定义,我们可以得到7个零件参数所对应正个零件参数所对应正态分布的均值与方差:态分布的均值与

23、方差:引例问题的分析求解引例问题的分析求解23引例问题的分析求解引例问题的分析求解24下面在脚本文件下面在脚本文件eg6_1.m中产生中产生1000个对零个对零件件7个参数的随机数,通过随机模拟法求解零个参数的随机数,通过随机模拟法求解零件平均损失的近似解件平均损失的近似解。%脚本脚本eg6_1.m文件文件clear;%清除内存变量清除内存变量mu=0.1,0.3,0.1,0.1,1.5,16,0.75;sigma=0.005/3,0.005,0.005/3,0.005,0.075,0.8/3,0.0125;for i=1:7引例问题的分析求解引例问题的分析求解25x(:,i)=normrnd

24、(mu(i),sigma(i),1000,1);endp=(1-2.62*(1-0.36*(x(:,4)./x(:,2).(-0.56).1.5.*(x(:,4)./x(:,2).1.16)./x(:,6)./x(:,7);q=(x(:,1)./x(:,5).*(x(:,3)./(x(:,2)-x(:,1).0.85;y=174.42*q.*p.0.5;d=abs(y-1.5);%与目标值差的绝对值与目标值差的绝对值f=sum(9000*(d0.3)+1000*(d0.1)/1000%求零件的平均损失求零件的平均损失%注意此处使用的是数组的点乘、点除、和点幂运算注意此处使用的是数组的点乘、点除

25、、和点幂运算。 f =2948结果分析结果分析26第一次运行脚本文件第一次运行脚本文件eg6_1.m时得到的解为时得到的解为2948,是否每次运行结果都一致呢?很显然,是否每次运行结果都一致呢?很显然,每次运行的结果应该不同,并且有一定的差别,每次运行的结果应该不同,并且有一定的差别,因为我们是按计算机内部算法取因为我们是按计算机内部算法取1000个正态个正态分布的随机模拟数,下表是连续分布的随机模拟数,下表是连续10次运行的结次运行的结果果表表1模拟模拟1000对零件参数对零件参数运行次数12345678910f(元)2897313330212894296728842873289629662

26、918结果分析结果分析27下面我们加大参数随机模拟的容量,提高两个数量级,取下面我们加大参数随机模拟的容量,提高两个数量级,取100000,同样我们取,同样我们取10次运行结果作成表次运行结果作成表2运行次数12345f(e+003)2.90852.92582.91522.89822.9310表表2模拟模拟100000对零件参数对零件参数问题求解问题求解286789102.91422.90832.91042.91192.9123这时,我们可以观察到,零件平均损失费用在这时,我们可以观察到,零件平均损失费用在2910附近附近波动,且波动辐度较小容量时小很多,此时我们可以确波动,且波动辐度较小容量时小很多,此时我们可以确认所得的解是比较接近零件平均损失的真实值。通过该认所得的解是比较接近零件平均损失的真实值。通过该实验也验证,随机模拟在很多实际问题的求解中能够取实验也验证,随机模拟在很多实际问题的求解中能够取得比较理想的效果。得比较理想的效果。思考与练习思考与练习29

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号