集合含义与表示

上传人:工**** 文档编号:584872248 上传时间:2024-09-01 格式:PPT 页数:23 大小:589KB
返回 下载 相关 举报
集合含义与表示_第1页
第1页 / 共23页
集合含义与表示_第2页
第2页 / 共23页
集合含义与表示_第3页
第3页 / 共23页
集合含义与表示_第4页
第4页 / 共23页
集合含义与表示_第5页
第5页 / 共23页
点击查看更多>>
资源描述

《集合含义与表示》由会员分享,可在线阅读,更多相关《集合含义与表示(23页珍藏版)》请在金锄头文库上搜索。

1、 被称为被称为“亚亚洲四小龙洲四小龙”的是的是哪四个地方?哪四个地方? 世界上最世界上最高的山峰叫什高的山峰叫什么?么? (1) 1 (1) 12020以内所有的质数以内所有的质数; ; (2) (2) 我国从我国从19911991到到20032003年的年的1313年内所发射年内所发射的所有人造卫星的所有人造卫星; ; (3) (3) 方程方程x x2 2+3x-2=0+3x-2=0的实数根的实数根; ; (4) (4) 到直线到直线l l的距离等于定长的距离等于定长d d的所有的点的所有的点; ; (5) (5) 新华中学新华中学0404年年9 9月入学的所有高一学生月入学的所有高一学生.

2、 . 你能发现你能发现它们有什么共它们有什么共同特征吗?同特征吗?集合:集合: 一般地,我们把研究对象统称为一般地,我们把研究对象统称为元素元素(element),把一些元素组成的总体叫做把一些元素组成的总体叫做集合集合(set).中国的中国的直辖市直辖市小于小于5 5的的自然数自然数集合中元素的特点:集合中元素的特点: 确定性确定性: :给定集合,它的给定集合,它的元素必须是确定的元素必须是确定的. .也就是说,给定了一个集合,那么任何一个元素也就是说,给定了一个集合,那么任何一个元素在不在这个集合中就确定了在不在这个集合中就确定了. . 所有由所有由“大于大于1小于小于10的自然数的自然数

3、”组成的集合组成的集合.数数 5与与 -5 ,你能确定它们哪个在这个集合内吗?,你能确定它们哪个在这个集合内吗? 5 -5集合中元素的特点:集合中元素的特点: 互异性互异性: :一个给定集合中的元素是一个给定集合中的元素是互不相同互不相同的的. . 也就是说,集合中的元素是也就是说,集合中的元素是不重复出现不重复出现的的. .集合中元素的特点:集合中元素的特点: 无序性无序性: :集合中的元素是集合中的元素是没有先后顺序没有先后顺序的的. .也就是说也就是说, ,集合中元素的排列次序集合中元素的排列次序与顺序无关与顺序无关. .“2 2,3 3,1”1”组成的集组成的集合合. .“2“2,3

4、3,1”1”组成的集组成的集合合. .“1“1,3 3,2”2”组成的集合组成的集合. .它们表示同一个集合它们表示同一个集合. .集合相等:集合相等: 只要构成两个集合的元素是一样的,我们只要构成两个集合的元素是一样的,我们就称这两个集合是相等的就称这两个集合是相等的. . 小于小于“2”2”的自然数组成的集的自然数组成的集合合. .由数由数“0”“0”和和“1”1”组成的组成的集合集合. . 这两个集这两个集合是相等的合是相等的. . A A、B B、CC表示集合表示集合. . a a、b b、cc表示集合中的元素表示集合中的元素. .集合集合A A是由小于是由小于5 5的自然数组成的集合

5、的自然数组成的集合. . 则有数则有数:0 0 A -3A -3 A.A. 如果如果a a是集合是集合A A中的元素,就说中的元素,就说a a属于集合属于集合A,A,记作:记作:a a A A; 如果如果a a不是集合不是集合A A中的元素,就说中的元素,就说a a不属于集不属于集合合A,A,记作:记作: a a A.A.数学中常用的数集及其记法:数学中常用的数集及其记法: 全体非负整数组成的集合称为非负整数集全体非负整数组成的集合称为非负整数集( (或自或自然数集然数集) ),记作,记作N;N; 所有正整数组成的集合称为正整数集,记作所有正整数组成的集合称为正整数集,记作N N* *或或N

6、N+ +; ; 全体整数组成的集合称为整数集,记作全体整数组成的集合称为整数集,记作Z Z; 全体有理数组成的集合称为有理数集,记作全体有理数组成的集合称为有理数集,记作Q Q; 全体实数组成的集合称为实数集,记作全体实数组成的集合称为实数集,记作R.R.列举法:列举法: 把集合的元素把集合的元素一一列举一一列举出来,并用花括号出来,并用花括号“ ” ”括起来表示集合的方法叫做括起来表示集合的方法叫做列举法列举法. . 地球上的四大洋地球上的四大洋. 太平洋太平洋 大西洋大西洋 印度洋印度洋 北冰洋北冰洋.用列举法表示下列集合:用列举法表示下列集合: (1) (1)小于小于1010的所有自然数

7、组成的集合的所有自然数组成的集合; ; (2) (2)方程的所有实数根组成的集合方程的所有实数根组成的集合. . 你能用列举你能用列举法表示法表示“x-x-37”37”的解集吗的解集吗?解解: (1) (1) 设小于设小于1010的所有自然数组成的集合为的所有自然数组成的集合为A,A,那么那么A=0,1,2,3,4,5,6,7,8,9.A=0,1,2,3,4,5,6,7,8,9.(2) (2) 设方程的所有实数根组成的集合为设方程的所有实数根组成的集合为B, B, 那么那么B=0,1 .B=0,1 .描述法:描述法: 用集合所含元素的用集合所含元素的共同特征共同特征表示集合的方表示集合的方法称

8、为法称为描述法描述法. . x-37 x-37的解集中所含元素的共同特征是的解集中所含元素的共同特征是: : xRxR且且x-3 7x-3 7,即,即x10.x10.描述法的具体方法是:描述法的具体方法是: 在花括号内先写上表示这个集合元素的在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有竖线,在竖线后写出这个集合中元素所具有的共同特征的共同特征. . 小于小于10001000的自然数组成的集合的自然数组成的集合: :所有的奇数组成的集合所有的奇数组成的集合: : xZ|xxZ|x=2k+1=2

9、k+1,kZkZ . .还可表示为还可表示为 : : x|xx|x=2k+1=2k+1,kZkZ . . xN|xxN|x1000.1000.用描述法表示:用描述法表示: (1) (1)方程方程x x2 2-4=0-4=0的所有实数根组成的集合的所有实数根组成的集合; ; (2) (2)由大于由大于1010小于小于2020的所有整数组成的集合的所有整数组成的集合. .分别用列举法和描述法表示下列集合分别用列举法和描述法表示下列集合. .解:解: (1) (1) 列举法:列举法:-2,2.-2,2. 描述法:描述法: xR|x xR|x2 2-4=0.-4=0.(2) (2) 列举法:列举法:1

10、1,12,13,14,15,16,17,18,19.11,12,13,14,15,16,17,18,19.描述法:描述法: xZ|10x20. xZ|10x20.判断以下元素的全体是否组成集合,说说你的理由判断以下元素的全体是否组成集合,说说你的理由. .(1)(1)我们班表现好的同学我们班表现好的同学; ;(2)(2)大于大于3 3小于小于1111的偶数的偶数; ;(3)(3)我国的小河流我国的小河流; ;(4)(4)方程方程x(x-1)(x-1)=0x(x-1)(x-1)=0的三个根的三个根. .(1)(1)设设A A为所有亚洲国家组成的集合,则:为所有亚洲国家组成的集合,则: 中国中国

11、A A 美国美国 A A 印度印度 A A 英国英国 A.A.(2)(2)若若A=xA=xN| xN| x2 2=x=x,则,则1 1 A . A . (3)(3)若若B=x|xB=x|x2 2+x-6=0+x-6=0,则,则3 3 A.A.(4)(4)若若C=xC=xN|1x10N|1x5.5.(3)10,20,30,40,50,60,70,80,90.(3)10,20,30,40,50,60,70,80,90.试选择适当的方法表示下列集合:试选择适当的方法表示下列集合:(1)(1)小于小于100100的实数组成的集合;的实数组成的集合;(2)(2)平方后等于本身的自然数组成的集合平方后等于

12、本身的自然数组成的集合. .解:解:(1)(1)x xR|xR|x100. 100. (2)0,1. (2)0,1. 试选择适当的方法表示下列集合:试选择适当的方法表示下列集合:(1)(1)我国公民的基本道德规范;我国公民的基本道德规范;(2)(2)不等式不等式4 4x-53x-53组成的集合;组成的集合;(3)(3)一次函数一次函数y=x+3y=x+3与与y=-2x+6y=-2x+6的图像交点组成的图像交点组成的集合的集合. .解:解: (1)(1)爱国守法爱国守法 明礼诚信明礼诚信 团结友爱团结友爱 勤俭自强勤俭自强 敬业奉献敬业奉献.(2)(2)x x R|xR|x2.2.(3)(3)(0 0,3 3). . 爸爸爸爸我我妈妈妈妈 这三个人能这三个人能组成一个集合吗组成一个集合吗? 组成一个组成一个叫什么的集合叫什么的集合呢?呢? 我们班所有的同学组我们班所有的同学组成一个班集体的集合,如成一个班集体的集合,如果少了一位同学,还能成果少了一位同学,还能成为一个完整的集合吗?为一个完整的集合吗?

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号