(全国通用)2019届高考数学大一轮复习 第十二章 概率、随机变量及其分布 12.1 随机事件的概率课件

上传人:工**** 文档编号:584809011 上传时间:2024-09-01 格式:PPT 页数:72 大小:3.27MB
返回 下载 相关 举报
(全国通用)2019届高考数学大一轮复习 第十二章 概率、随机变量及其分布 12.1 随机事件的概率课件_第1页
第1页 / 共72页
(全国通用)2019届高考数学大一轮复习 第十二章 概率、随机变量及其分布 12.1 随机事件的概率课件_第2页
第2页 / 共72页
(全国通用)2019届高考数学大一轮复习 第十二章 概率、随机变量及其分布 12.1 随机事件的概率课件_第3页
第3页 / 共72页
(全国通用)2019届高考数学大一轮复习 第十二章 概率、随机变量及其分布 12.1 随机事件的概率课件_第4页
第4页 / 共72页
(全国通用)2019届高考数学大一轮复习 第十二章 概率、随机变量及其分布 12.1 随机事件的概率课件_第5页
第5页 / 共72页
点击查看更多>>
资源描述

《(全国通用)2019届高考数学大一轮复习 第十二章 概率、随机变量及其分布 12.1 随机事件的概率课件》由会员分享,可在线阅读,更多相关《(全国通用)2019届高考数学大一轮复习 第十二章 概率、随机变量及其分布 12.1 随机事件的概率课件(72页珍藏版)》请在金锄头文库上搜索。

1、12.1随机事件的概率第十二章概率、随机变量及其分布基础知识自主学习课时作业题型分类深度剖析内容索引基础知识自主学习1.概率和频率概率和频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率.(2)对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性的大小,并把这个称为随机事件A的概率,记作P(A).知识梳理频率常数2.事件的关系与运算事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B

2、一定发生,这时称事件B事件A(或称事件A包含于事件B)(或AB)相等关系若BA且AB_并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的_AB(或AB)包含BAAB并事件(或和事件)交事件(积事件)若某事件发生当且仅当_且,则称此事件为事件A与事件B的_AB(或AB)互斥事件若AB为不可能事件(AB),则称事件A与事件B互斥AB对立事件若AB为不可能事件,AB为必然事件,那么称事件A与事件B_AB,_事件A发生事件B发生交事件(或积事件)互为对立事件P(A)P(B)13.概率的几个基本性质概率的几个基本性质(1)概率的取值范围:.(2)必然事件的概率P(E)

3、.(3)不可能事件的概率P(F).(4)概率的加法公式如果事件A与事件B互斥,则P(AB).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A).0P(A)110P(A)P(B)1P(B)互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.【知识拓展】题组一思考辨析题组一思考辨析1.判断下列结论是否正确(请在括号中打“”或“”)(1)事件发生的频率与概率是相同的.()(2)随机事件和随机试验是一回事.()

4、(3)在大量重复试验中,概率是频率的稳定值.()(4)两个事件的和事件是指两个事件都得发生.()(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.()(6)两互斥事件的概率和为1.()基础自测123456题组二教材改编题组二教材改编2.P121T5一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是 A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶答案解析解析 “至少有一次中靶”的对立事件是“两次都不中靶”.解析1245633.P82B组T1有一个容量为66的样本,数据的分组及各组的频数如下:11.5,15.5),2;15.5,19.5),4;19.5,23.5)

5、,9;23.5,27.5),18;27.5,31.5),11;31.5,35.5),12;35.5,39.5),7;39.5,43.5,3.根据样本的频率分布估计,数据落在27.5,43.5内的概率约是_.答案解析124563题组三易错自纠题组三易错自纠4.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是 A.必然事件B.随机事件C.不可能事件D.无法确定解解析析抛掷10次硬币正面向上的次数可能为010,都有可能发生,正面向上5次是随机事件.解析答案1245635.(2017洛阳统考)安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一

6、天,那么甲连续三天参加活动的概率为 解析答案1245636.(2018济南模拟)从一箱产品中随机地抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的产品不是一等品”的概率为_.解析答案124560.353解析解析事件A抽到一等品,且P(A)0.65,事件“抽到的产品不是一等品”的概率为P1P(A)10.650.35.题型分类深度剖析1.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:至少有1个白球与至少有1个黄球;至少有1个黄球与都是黄球;恰有1个白球与恰有1个黄球;恰有1个白球与都是黄球.其

7、中互斥而不对立的事件共有 A.0组B.1组C.2组D.3组解析答案题型一事件关系的判断自主演练自主演练A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡解析答案解解析析至多有一张移动卡包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.3.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出两个球,事件A“取出的两个球同色”,B“取出的两个球中至少有一个黄球”,C“取出的两个球中至少有一个白球”,D“取出的两个球不同色”,E“取出的两个球中至多有一个白球”.下列判断中正确的序号为_.A与D为对立事件;B与C是互斥事件;C与E

8、是对立事件;P(CE)1;P(B)P(C).解析答案(1)准确把握互斥事件与对立事件的概念互斥事件是不可能同时发生的事件,但可以同时不发生.对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.(2)判断互斥、对立事件的方法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.思维升华思维升华典典例例(2017全国)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与

9、当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:题型二随机事件的频率与概率师生共研师生共研最高气温10,15)15,20)20,25)25,30)30,35)35,40天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;解答解解这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于2

10、5的频率为0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.因此Y大于零的概率的估计值为0.8.(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.解答解解当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y64504450900;若最高气温位于区间20,25),则Y63002(450300)4450300;若最高气温低于20,则Y62002(450200)4450100,所以,Y的所有可能值为900,300,100.(1)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频

11、率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.(2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.思维升华思维升华跟跟踪踪训训练练(2018沈阳模拟)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“”表示购买,“”表示未购买.(1)估计顾客同时购买乙和丙的概率;商品顾客人数甲乙丙丁1002172003008598解解从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,解答解答(

12、2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;解解从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.解答(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解解与(1)同理,可得所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.命题点命题点1互斥事件的概率互斥事件的概率典典例例(2016北京改编)A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):题型三互斥、对立事件的概率多维探究多维探究A班

13、66.577.58B班6789101112C班34.567.5910.51213.5(1)试估计C班的学生人数;解答(2)从A班和C班抽出的学生中,各随机选取1人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率.解答A班66.577.58B班6789101112C班34.567.5910.51213.5命题点命题点2对立事件的概率对立事件的概率典典例例 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;解答(2)取出1球是红球或黑球或白球的概率.解答解解方法一

14、方法一取出1球是红球或黑球或白球的概率为P(A1A2A3)P(A1)P(A2)P(A3)方法二方法二因为A1A2A3的对立事件为A4,求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率.(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.思维升华思维升华跟跟踪踪训训练练 某保险公司利用简单随机抽样方法对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下

15、:解答赔付金额(元)01000200030004000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;解解设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,以频率估计概率得由于投保金额为2800元,赔付金额大于投保金额对应的情形是赔付金额为3000元和4000元,所以其概率为P(A)P(B)0.150.120.27.(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.解答解解设C表示事件“投保车辆中新

16、司机获赔4000元”,由已知,可得样本车辆中车主为新司机的有0.11000100(辆),而赔付金额为4000元的车辆中,车主为新司机的有0.212024(辆),所以样本车辆中新司机车主获赔金额为4000元的频率为0.24,由频率估计概率得P(C)0.24.用正难则反思想求对立事件的概率思想方法思想方法典典例例(12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.思想方法指导规范解答一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10结算时间(分钟/人)11.522.53已知这100位顾客中

17、一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间2分钟的概率.(将频率视为概率)课时作业1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是 A.互斥但非对立事件B.对立事件C.相互独立事件D.以上都不对基础保分练解析答案12345678910111213141516解解析析由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.2.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有

18、同学参加公益活动的概率为 解析答案12345678910111213141516解析答案12345678910111213141516解析答案123456789101112131415164.(2017湖南衡阳八中、长郡中学等十三校二模)同学聚会上,某同学从爱你一万年、十年、父亲、单身情歌四首歌中选出两首歌进行表演,则爱你一万年未被选取的概率为 解解析析分别记爱你一万年、十年、父亲、单身情歌为A1,A2,A3,A4,从这四首歌中选出两首歌进行表演的所有可能的结果为A1A2,A1A3,A1A4,A2A3,A2A4,A3A4,共6个,其中A1未被选取的结果有3个,所以所求概率P5.下列命题:将一枚

19、硬币抛两次,设事件M:“两次出现正面”,事件N:“只有一次出现反面”,则事件M与N互为对立事件;若事件A与B互为对立事件,则事件A与B为互斥事件;若事件A与B为互斥事件,则事件A与B互为对立事件;若事件A与B互为对立事件,则事件AB为必然事件.其中的真命题是 A.B.C.D.解析答案12345678910111213141516解析答案123456789101112131415167.(2017武汉模拟)已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,

20、0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为_.0.2512345678910111213141516解析答案8.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)2a,P(B)4a5,则实数a的取值范围是_.解析答案123456789101112131415169.甲、乙两人玩数字游戏,先由甲任想一数字,记为a,再由乙猜甲刚才想的数字,把乙猜出的数字记为b,且a,b1,2

21、,3,若|ab|1,则称甲、乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为_.解析答案12345678910111213141516解析答案123456789101112131415160.7410.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下表:排队人数012345概率0.10.160.30.30.10.04则该营业窗口上午9点钟时,至少有2人排队的概率是_.解析解析由表格可得至少有2人排队的概率P0.30.30.10.040.74.11.(2018深圳模拟)有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同

22、,现从中任意取出两个球.(1)求取出的两个球颜色相同的概率;解答12345678910111213141516(2)求取出的两个球颜色不相同的概率.解答12345678910111213141516解解记事件D为“取出的两个球的颜色不相同”,则事件C,D对立,根据对立事件概率之间的关系,12.某商场有奖销售中,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);解答12345678910111213141516解答1234567891011

23、1213141516(2)1张奖券的中奖概率;解解1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则MABC.A,B,C两两互斥,P(M)P(ABC)P(A)P(B)P(C)解答12345678910111213141516(3)1张奖券不中特等奖且不中一等奖的概率.解解设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,现随机选取一个成员,他属于至少2个小组的概率是_,他属于不超过2个小组的概率是_.13.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体

24、情况如图所示.技能提升练解析答案1234567891011121314151614.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现有甲、乙两人从袋中轮流取球,甲先取,乙后取,然后甲再取,取后不放回,直到两人中有1人取到白球时终止.每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数;12345678910111213141516解答(2)求取球2次即终止的概率;12345678910111213141516解答解解记“取球2次即终止”为事件A,(3)求甲取到白球的概率.12345678910111213141516解答解解 记“甲取到白球”为事件B,“第i次取到白球”

25、为事件Ai,i1,2,3,4,5.因为甲先取,所以甲只能在第1次,第3次和第5次取球.拓展冲刺练答案解析123456789101112131415160.86415.如图,用K,A1,A2三类不同的元件连接成一个系统.当K正常工作且A1,A2至少有一个正常工作时,系统正常工作.已知K,A1,A2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为_.16.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如表所示:12345678910111213141516X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)完成下表,并求所种作物的平均年收获量;12345678910111213141516解答Y51484542频数4(2)在所种作物中随机选取一株,求它的年收获量至少为48kg的概率.12345678910111213141516解答故在所种作物中随机选取一株,它的年收获量至少为48kg的概率为

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 幼儿/小学教育 > 幼儿教育

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号