《普通物理学-第二章》由会员分享,可在线阅读,更多相关《普通物理学-第二章(100页珍藏版)》请在金锄头文库上搜索。
1、第二章第二章 运动的守恒量和守恒定律运动的守恒量和守恒定律2-1 质点系的内力和外力点系的内力和外力 质心心 质心运心运动定理定理2-2 动量定理量定理 动量守恒定律量守恒定律2-3 功功 能量能量 动能定理能定理2-4 保守力保守力 成成对力的功力的功 势能能2-5 质点系的功能原理点系的功能原理 机械能守恒定律机械能守恒定律2-6 碰撞碰撞 2-7 质点的角点的角动量和角量和角动量守恒定律量守恒定律 2-8 对称性和守恒定律称性和守恒定律 2-1 质点系的内力和外力点系的内力和外力 质心心 质心运心运动定理定理一、质点系的内力与外力一、质点系的内力与外力系统内,内力是成对出现的。系统内,内
2、力是成对出现的。质点系内各个质点间的相互作用。质点系内各个质点间的相互作用。内力(内力(internal force)外力(外力(external force)质点系外物体对系统内质点所施加的力。质点系外物体对系统内质点所施加的力。2-1 2-1 质点系的内力和外力质点系的内力和外力 质心质心 质心运动定理质心运动定理二、质心二、质心质心(质心(center of mass)是与质量分布有关的一个代表是与质量分布有关的一个代表点,它的位置在平均意义上代表着质量分布的中心。点,它的位置在平均意义上代表着质量分布的中心。对于对于N个质点组成的质点系:个质点组成的质点系:直角坐标系中的分量式:直角坐
3、标系中的分量式:质心的位矢:质心的位矢:对于质量连续分布的物体对于质量连续分布的物体分量式:分量式:面分布面分布体分布体分布线分布线分布质心的位矢:质心的位矢: 质心与重心(质心与重心(center of gravity)是两个不同的概念,是两个不同的概念,重心是地球对物体各部分引力的合力重心是地球对物体各部分引力的合力(即重力即重力)的作用的作用点,质心与重心的位置不一定重合。点,质心与重心的位置不一定重合。 例例2-1求腰长为求腰长为a的等腰直角三角形均匀薄板的质心位的等腰直角三角形均匀薄板的质心位置。置。取宽度为取宽度为dx的面积元,设薄板每单位的面积元,设薄板每单位面积的质量为面积的质
4、量为 ,则此面积元的质量,则此面积元的质量为为解:解: 取坐标轴如图,根据对称性分析取坐标轴如图,根据对称性分析可知可知 三、质心运动定理三、质心运动定理由由质心位矢公式:质心位矢公式:质心的速度为质心的速度为 质心的加速度为质心的加速度为 由牛顿第二定律得由牛顿第二定律得对于对于系统内成对的系统内成对的内力内力 质心的运动等同于一个质点的运动,质心的运动等同于一个质点的运动,这个质点具有质点系的总质量,它受到的外力为质这个质点具有质点系的总质量,它受到的外力为质点系所受的所有外力的矢量和。点系所受的所有外力的矢量和。质心运动定理:质心运动定理:2-2 动量定理量定理 动量守恒定律量守恒定律一
5、、动量定理一、动量定理由牛顿运动定律:由牛顿运动定律: 表示力对时间的累积量,表示力对时间的累积量,叫做叫做冲量(冲量(impulse of force)。 其中,其中, 质点在运动质点在运动过程中,所受合外力的冲量等于质点动量的增量。过程中,所受合外力的冲量等于质点动量的增量。 说明说明 (1) 冲量冲量 的方向是所有元冲量的方向是所有元冲量 的合的合矢量的方向矢量的方向。动量定理动量定理反映了力在时间上的累积作反映了力在时间上的累积作用对质点产生的效果。用对质点产生的效果。逆风行舟的分析:逆风行舟的分析:动量定理(动量定理(theorem of momentum):):(2) 动量定理中的
6、动量和冲量都是矢量,符合矢量动量定理中的动量和冲量都是矢量,符合矢量叠加原理,或以分量形式进行计算:叠加原理,或以分量形式进行计算:(3) 在在 冲击、冲击、 碰撞问题中碰撞问题中估算估算平均平均冲力(冲力(implusive force)。(4) 动量定理是牛顿第二定律的积分形式,只适用于动量定理是牛顿第二定律的积分形式,只适用于惯性系惯性系。F(t)Ft(5) 动量定理在处理变质量问题时很方便。动量定理在处理变质量问题时很方便。 研究锤对工件的作用过程,研究锤对工件的作用过程,在竖在竖直方向利用动量定理,取竖直向上为正。直方向利用动量定理,取竖直向上为正。例例2-2 质量质量m=0.3 t
7、的重锤,从高度的重锤,从高度h=1.5 m处自由落到处自由落到受锻压的工件上,工件发生形变。如果作用的时间受锻压的工件上,工件发生形变。如果作用的时间(1) =0.1 s, (2) =0.01 s 。试求锤对工件的平均冲试求锤对工件的平均冲力。力。以以重重锤锤为为研研究究对对象象,分分析析受受力力,作受力图。作受力图。解:解:解法一:解法一:解解法法二二:研研究究锤锤从从自自由由下下落落到到静静止止的的整整个个过过程程,其动量变化为零。其动量变化为零。重力作用时间为重力作用时间为支持力的作用时间为支持力的作用时间为 由动量定理:由动量定理:例例2-3 一一绳绳跨跨过过一一定定滑滑轮轮,两两端端
8、分分别别拴拴有有质质量量为为m及及m的的物物体体A和和B, m大大于于m。B静静止止在在地地面面上上,当当A自自由由下下落落距距离离h后后,绳绳子子才才被被拉拉紧紧。求求绳绳子子刚刚被被拉拉紧紧时时两两物物体体的的速度,以及能上升的最大高度。速度,以及能上升的最大高度。 作绳拉紧时的受力图。作绳拉紧时的受力图。绳绳子子刚刚好好拉拉紧紧前前的的瞬瞬间间,物物体体A的速度为的速度为 解:解:经过短暂的冲击过程,两物体速经过短暂的冲击过程,两物体速率相等,对两物体分别应用动量率相等,对两物体分别应用动量定理(取向上为正):定理(取向上为正):考虑到绳不可伸长,有:考虑到绳不可伸长,有:平均冲力平均冲
9、力FT1 、FT2重力,因而忽略重力。重力,因而忽略重力。绳子拉紧后,绳子拉紧后,A、B系统的加速度为系统的加速度为 即为绳子刚被拉紧即为绳子刚被拉紧时两物体的速度。时两物体的速度。速度为零时,物体速度为零时,物体B达到最大高度达到最大高度H:*二、变质量物体的运动方程二、变质量物体的运动方程设设 t 时刻,某物体质量为时刻,某物体质量为 m,速度为速度为 (c),另有一另有一质元质元dm ,速度为速度为 。t+dt 时刻合并后的共同速度为时刻合并后的共同速度为 。把物体与质元作为系统,由动量定理把物体与质元作为系统,由动量定理略去二阶小量,略去二阶小量,变质量物体运动方程变质量物体运动方程
10、注意:注意:dm可正可负,当可正可负,当dm取负时,表明物体质量取负时,表明物体质量减小。减小。例例2-4 质量为质量为m的均质链条,全长为的均质链条,全长为L,手持其上端,使手持其上端,使下端离地面的高度为下端离地面的高度为h。然后放手让它自由下落到地上。然后放手让它自由下落到地上。求链条落到地上的长度为求链条落到地上的长度为 l 时,地面所受链条作用力的时,地面所受链条作用力的大小。大小。 解:解:用变质量物体运动方程求解用变质量物体运动方程求解 。落在地面上链段落在地面上链段 ml 速度为零,作用在未速度为零,作用在未落地部分落地部分(m-ml)上的外力有重力和地面上的外力有重力和地面给
11、它的冲力。取向下为正:给它的冲力。取向下为正: 即即自由下落:自由下落: 地面所受链条作用力为地面所受链条作用力为 (已落地部分(已落地部分链条的重力)链条的重力) 例例2-5 矿砂从传送带矿砂从传送带A落到另一传送带落到另一传送带B,其速度,其速度v1=4 m/s,方向与竖直方向成,方向与竖直方向成30角,而传送带角,而传送带B与水平成与水平成15角,其速度角,其速度v2=2 m/s。如传送带的运送量恒定,设。如传送带的运送量恒定,设为为k=20 kg/s,求落到传送带,求落到传送带B上的矿砂在落上时所受到上的矿砂在落上时所受到的力。的力。解:解:设在某极短的时间设在某极短的时间 t 内落在
12、传送带上矿砂的质量内落在传送带上矿砂的质量为为m ,即,即m=k t,这些矿砂动量的增量为,这些矿砂动量的增量为其大小为其大小为设这些矿砂在时间设这些矿砂在时间 t 内所受的平均作内所受的平均作用力为用力为 ,由动量定理,由动量定理方向由方向由近似竖直向上近似竖直向上= = 常矢量常矢量= =常矢量常矢量根据质心运动定律:根据质心运动定律:若若三、动量守恒定律三、动量守恒定律即即 如如果果系系统统所所受受的的外外力力之之和和为为零零,则则系系统统的的总总动动量量保保持持不不变变,这这个个结结论论叫叫做做动动量量守守恒恒定定律律(law of conservation of momentum)。
13、则则(2)当外力作用远小于内力作用时,可近似认为系统当外力作用远小于内力作用时,可近似认为系统的总动量守恒。(如:碰撞、打击过程等)的总动量守恒。(如:碰撞、打击过程等)(1)动量守恒是指系统动量总和不变,但系统内各个动量守恒是指系统动量总和不变,但系统内各个质点的动量可以变化质点的动量可以变化, , 通过内力进行传递和交换。通过内力进行传递和交换。说明说明(3) 分量式分量式(4) 定律不仅适合宏观物体,同样也适合微观领域。定律不仅适合宏观物体,同样也适合微观领域。*四、火箭飞行四、火箭飞行设设 t 时刻,火箭质量为时刻,火箭质量为 m,速度为速度为 v (向向上上),在,在 dt 内,喷出
14、气体内,喷出气体 dm (0),喷气喷气相对火箭的速度相对火箭的速度(称喷气速度称喷气速度)为为 u (向下向下),使火箭的速度增加了,使火箭的速度增加了 dv。若不计重力和其他外力,由若不计重力和其他外力,由动量守恒动量守恒定律可得定律可得 略去二阶小量,略去二阶小量,设设u是一常量,是一常量,设火箭开始飞行的速度为零,质量为设火箭开始飞行的速度为零,质量为m0 ,燃料烧尽时,燃料烧尽时,火箭剩下的质量为火箭剩下的质量为m ,此时火箭能达到的速度是此时火箭能达到的速度是 火箭的质量比火箭的质量比 多级火箭:多级火箭:第第 i 级火箭喷气速率级火箭喷气速率第第 i 级火箭质量比级火箭质量比最终
15、速度:最终速度: 例例2-6 如图所示如图所示,设炮车以仰角设炮车以仰角 发射一炮弹,炮车和发射一炮弹,炮车和炮弹的质量分别为炮弹的质量分别为m 和和m ,炮弹的出口速度为炮弹的出口速度为v,求求炮车的反冲速度炮车的反冲速度v。炮车与地面间的摩擦力不计。炮车与地面间的摩擦力不计。解:解:选取炮车和炮弹组成系统选取炮车和炮弹组成系统内、外力分析。内、外力分析。炮车与地面间的摩擦力不计,炮车与地面间的摩擦力不计,系统水平方向动量守恒。系统水平方向动量守恒。得炮车的反冲速度为得炮车的反冲速度为 思考:竖直方向动量守恒吗?思考:竖直方向动量守恒吗?系统水平方向动量守恒:系统水平方向动量守恒: 炸裂时爆
16、炸力是物体内力,它远大于重力,故炸裂时爆炸力是物体内力,它远大于重力,故在爆炸中,可认为动量守恒。在爆炸中,可认为动量守恒。例例2-7 一个静止物体炸成三块,其中两块质量相等,一个静止物体炸成三块,其中两块质量相等,且以相同速度且以相同速度30 m/s沿相互垂直的方向飞开,第三块沿相互垂直的方向飞开,第三块的质量恰好等于这两块质量的总和。试求第三块的速的质量恰好等于这两块质量的总和。试求第三块的速度(大小和方向)。度(大小和方向)。解:解:即即 和和 及及 都成都成 ,且三者都在同一平面内且三者都在同一平面内 例例2-8 质量为质量为m1 和和m2的两个的两个小孩,在光滑水平冰面上小孩,在光滑
17、水平冰面上用绳彼此拉对方。开始时静止,相距为用绳彼此拉对方。开始时静止,相距为l 。问他们将在问他们将在何处相遇?何处相遇? 把两个小孩和绳看作一个把两个小孩和绳看作一个系统,水平方向动量守恒。系统,水平方向动量守恒。任取两个小孩连线上一点为任取两个小孩连线上一点为原点,向右为原点,向右为x轴为正向。轴为正向。解:解:设开始时小孩的坐标分别为设开始时小孩的坐标分别为x10、x20,在任意时刻的速度分别在任意时刻的速度分别v1为为v2,坐标为坐标为x1和和x2。由运动学关系:由运动学关系:相遇时:相遇时:x1=x2由动量守恒:由动量守恒:(1)代入式(代入式(1)得)得结果表明,两小孩在纯内力作
18、用下,将在他们共结果表明,两小孩在纯内力作用下,将在他们共同的质心相遇。上述结果也可直接由质心运动定同的质心相遇。上述结果也可直接由质心运动定律求出。律求出。相遇时有相遇时有 一、功的概念一、功的概念 物物体体在在力力 的的作作用用下下发发生生一一无无限限小小的的位位移移 (元元位移位移)时,此力对它做的时,此力对它做的功(功(work)定义为定义为 可以写成两个矢量的可以写成两个矢量的标积(标积(scalar product):功是标量,没有方向,但有正负。功是标量,没有方向,但有正负。单位:单位:N m = J(焦耳焦耳)功率(功率(power):单位:单位:J/s(W)2-3 功功 能量
19、能量 动能定理能定理( 为力与位移的夹角)为力与位移的夹角) 能能量量是是反反映映各各种种运运动动形形式式共共性性的的物物理理量量,各各种种运运动动形形式式的的相相互互转转化化可可以以用用能能量量来来量量度度。各各种种运运动动形式的相互转化遵守能量守恒定律。形式的相互转化遵守能量守恒定律。 与机械运动直接相关的能量是机械能,它是与机械运动直接相关的能量是机械能,它是物物体机械运动状态(即位置和速度)的单值函数,包体机械运动状态(即位置和速度)的单值函数,包括动能和势能。括动能和势能。二、能量二、能量 能量是物体状态的单值函数。物体状态发生变化,能量是物体状态的单值函数。物体状态发生变化,它的能
20、量也随之变化。它的能量也随之变化。三、动能定理三、动能定理设质点在变力设质点在变力 的作用下沿曲线从的作用下沿曲线从a点移动到点移动到b点,点,变力所做的功为:变力所做的功为:由牛顿第二定律:由牛顿第二定律:定义质点的定义质点的动能(动能(kinetic energy):则有则有 动能定理(动能定理(theorem of kinetic energy):):合外力对合外力对质点所做的功等于质点动能的增量。质点所做的功等于质点动能的增量。 3. 功是一个过程量,而动能是一个状态量。功是一个过程量,而动能是一个状态量。1. 与参考系有关,动能定理只在惯性系中成立。与参考系有关,动能定理只在惯性系中
21、成立。2.4. 微分形式:微分形式:例例2-9 装装有有货货物物的的木木箱箱,重重量量G=980 N,要要把把它它运运上上汽汽车车。现现将将长长l=3 m的的木木板板搁搁在在汽汽车车后后部部,构构成成一一斜斜面面,然然后后把把木木箱箱沿沿斜斜面面拉拉上上汽汽车车。斜斜面面与与地地面面成成30角角,木木箱箱与与斜斜面面间间的的滑滑动动摩摩擦擦因因数数 =0.20,绳绳的的拉拉力力 与与斜斜面面成成10角角,大大小小为为700 N。 求求:(1)木木箱箱所所受受各各力力所所做做的的功功;(2)合合外外力力对对木木箱箱所所做做的的功功;(3)如如改用起重机把木箱直接吊上汽车能不能少做些功?改用起重机
22、把木箱直接吊上汽车能不能少做些功?木箱所受的力分析如图所示木箱所受的力分析如图所示 。拉力拉力F 所做的功所做的功重力所做的功重力所做的功解:解: (1)每个力所做的功:)每个力所做的功:正压力所做的功正压力所做的功根据牛顿第二定律:根据牛顿第二定律:摩擦力所做的功:摩擦力所做的功:(2)合力所做的功:)合力所做的功:(3)如改用起重机把木箱吊上汽车。)如改用起重机把木箱吊上汽车。所用拉力所用拉力 F 至少要等于重力。这时拉力所做的功为至少要等于重力。这时拉力所做的功为 等于重力所做的功,而符号相反,这时合外力所做的等于重力所做的功,而符号相反,这时合外力所做的功为零。功为零。与(与(1)中)
23、中 F做的功相比较,用了起重机能够少做功。做的功相比较,用了起重机能够少做功。(1)中推力)中推力 F 所多做的功:所多做的功:其中,其中,435 J 的功用于克服摩擦力,转变成热量;余下的功用于克服摩擦力,转变成热量;余下165 J 的功将使木箱的动能增加。的功将使木箱的动能增加。例例2-10 柔软均质物体以初速柔软均质物体以初速v0 送上平台,物体前端在送上平台,物体前端在平台上滑行平台上滑行 s 距离后停止。设滑道上无摩擦,物体与台距离后停止。设滑道上无摩擦,物体与台面间的摩擦因数为面间的摩擦因数为 ,且且 s ,求初速度,求初速度v0 。解:解:由动能定理:由动能定理:一、一、 保守力
24、保守力 根据各种力做功的特点,可将力分为保守力和根据各种力做功的特点,可将力分为保守力和非保守力。非保守力。 保守力(保守力(conservative force):如:重力、万有引力、弹性力以及静电力等。如:重力、万有引力、弹性力以及静电力等。 非保守力非保守力(non-conservative force):如:摩擦力、回旋力等。如:摩擦力、回旋力等。 做功与路径无关,只与始末位置有关的力。做功与路径无关,只与始末位置有关的力。 做功不仅与始末位置有关,还与路径有关的力。做功不仅与始末位置有关,还与路径有关的力。 2-4 保守力保守力 成成对力的功力的功 势能能重力的功重力的功 重力做功只
25、与质点的起始和终了位置有关,重力做功只与质点的起始和终了位置有关, 而与而与所经过的路径无关,所经过的路径无关,重力是保守力重力是保守力 !设物体设物体m从从a点沿任一曲线移动到点沿任一曲线移动到b点。点。在元位移在元位移 中,重力所做的元功为中,重力所做的元功为 如果物体沿如果物体沿闭合路径闭合路径abcda运动一周,运动一周,容易计算重力所做的功为:容易计算重力所做的功为: 讨论讨论 表明保守力沿任何闭合路径做功等于零。表明保守力沿任何闭合路径做功等于零。 (L为任意闭合路径)为任意闭合路径)或或弹性力的功弹性力的功 弹性力做功只与质点的起始和终了位置有关,而弹性力做功只与质点的起始和终了
26、位置有关,而与质点运动的路径无关,与质点运动的路径无关,弹性力是保守力弹性力是保守力 !设光滑水平桌面一端固定设光滑水平桌面一端固定的轻弹簧的轻弹簧(k),另一端连另一端连接质点接质点 m,当质点由当质点由a点点运动到运动到b点的过程中点的过程中 :万有引力的功万有引力的功设质量为设质量为m 的质点固定,另一质量为的质点固定,另一质量为m的质点在的质点在m 的的引力场中从引力场中从a点运动到点运动到b点。点。 万有引力的功仅由物体的始末位置决定,与路径无万有引力的功仅由物体的始末位置决定,与路径无关,关,万有引力是保守力万有引力是保守力 !摩擦力的功摩擦力的功 摩擦力做功与路径有关,摩擦力做功
27、与路径有关,摩擦力是非保守力摩擦力是非保守力! 质量为质量为m的物体在桌面上沿曲线的物体在桌面上沿曲线路径从路径从a点运动到点运动到b点,设物体点,设物体与桌面的摩擦因数为与桌面的摩擦因数为 , 其中其中sab为物体经过的路程,与物体的运动路径有关。为物体经过的路程,与物体的运动路径有关。二、成对力的功二、成对力的功 设有两个质点设有两个质点m1和和m2,存在一对相互作用力存在一对相互作用力 和和 。 在在dt 时间内分别经过元时间内分别经过元位移位移 和和 ,这一对,这一对力所做的元功为力所做的元功为 相对元位移相对元位移 成对力的功:成对力的功: 讨论讨论 (1) 成对作用力和反作用力所做
28、的总功只与作用力及成对作用力和反作用力所做的总功只与作用力及相对位移有关,而与每个质点各自的运动无关。相对位移有关,而与每个质点各自的运动无关。 (2) 质点间的相对位移和作用力都是不随参考系而变质点间的相对位移和作用力都是不随参考系而变化的,因此,任何一对作用力和反作用力所做的总功化的,因此,任何一对作用力和反作用力所做的总功具有与参考系选择无关的不变性质。具有与参考系选择无关的不变性质。 (3) 可以由相对位移来分析系统中成对内力的功。可以由相对位移来分析系统中成对内力的功。 三、势能三、势能 与物体的位置相联系的系统能量称为与物体的位置相联系的系统能量称为势能势能(potential e
29、nergy),常用常用Ep表示。表示。保守力的功是势能变化的量度:保守力的功是势能变化的量度: 物体在保守力场中物体在保守力场中a、b两点的势能两点的势能Epa、Epb 之之差差等于质点由等于质点由a点移动到点移动到b点过程中保守力做的功点过程中保守力做的功Aab: 成对保守内力的功等于系统势能的减少。成对保守内力的功等于系统势能的减少。 保守力的功只与物体的始末位置有关,而与参照保守力的功只与物体的始末位置有关,而与参照系无关系无关 。弹性势能弹性势能重力势能重力势能引力势能引力势能如:如:若选若选势势能零点能零点 势能的大小只有相对的意义,相对于势能的大小只有相对的意义,相对于势能零点势能
30、零点而而言。言。势能零点可以任意选取。势能零点可以任意选取。势能差有绝对意义。势能差有绝对意义。 势能是相互作用有保守力的系统的属性。势能是相互作用有保守力的系统的属性。说明说明 已知势能函数,可以计算保守力。已知势能函数,可以计算保守力。由由又又 保守力沿某坐标轴的分量等于势能对此坐标的保守力沿某坐标轴的分量等于势能对此坐标的导数的负值。导数的负值。四、势能曲线四、势能曲线(1)根据势能曲线的形状可以讨论物体的运动。)根据势能曲线的形状可以讨论物体的运动。(2)利用势能曲线,可以判断物体在各个位置所受)利用势能曲线,可以判断物体在各个位置所受保守力的大小和方向。保守力的大小和方向。解:解:例
31、例2-11 已知双原子分子的势函数为已知双原子分子的势函数为 ,a、b为正常数,函数曲线如图所示,如果分子的总能为正常数,函数曲线如图所示,如果分子的总能量为零。求:量为零。求:(1) 双原子之间的最小距离;双原子之间的最小距离; (2) 双原子双原子之间平衡位置的距离;之间平衡位置的距离; (3) 双原子之间最大引力时的双原子之间最大引力时的两原子距离;两原子距离; (4) 画出与势能曲线相应的原子之间的画出与势能曲线相应的原子之间的相互作用力曲线。相互作用力曲线。(1)当动能当动能 Ek=0 时,时,Ep为最大,为最大,两原子之间有最小距离:两原子之间有最小距离:平衡位置的条件为平衡位置的
32、条件为F=0,最大引力的条件为最大引力的条件为 (2) 双原子之间平衡位置的距离双原子之间平衡位置的距离(3) 双原子之间最大引力时的两原子距离双原子之间最大引力时的两原子距离在位置在位置x1处,保守力处,保守力F为零。为零。在势能曲线的拐点位置在势能曲线的拐点位置 x2 处,处,保守力保守力F有最小值。有最小值。(4) 画出与势能曲线相应的原子之间的相互作用画出与势能曲线相应的原子之间的相互作用力曲线。力曲线。一、质点系的动能定理一、质点系的动能定理设系统由两个质点设系统由两个质点m1 和和m2组成,组成,对质点对质点1 和和2分别应用动能定理:分别应用动能定理:相加,得相加,得 系统外力的
33、功系统外力的功Ae系统内力的功系统内力的功Ai2-5 质点系的功能原理点系的功能原理 机械能守恒定律机械能守恒定律质质点点系系的的动动能能定定理理:系系统统的的外外力力和和内内力力做做功功的的总总和等于系统动能的增量。和等于系统动能的增量。二、质点系的功能原理二、质点系的功能原理内力的功可分为保守内力的功和非保守内力的功:内力的功可分为保守内力的功和非保守内力的功:质质点点系系的的功功能能原原理理:当当系系统统从从状状态态1变变化化到到状状态态2时时,它它的的机机械械能能的的增增量量等等于于外外力力的的功功与与非非保保守守内内力力的的功功的的总和。总和。与动能定理比较,运用功能原理时由于保守力
34、所做与动能定理比较,运用功能原理时由于保守力所做的功已为系统势能的变化所代替,因此不必再计算保的功已为系统势能的变化所代替,因此不必再计算保守内的功。守内的功。例例2-12 一汽车的速度一汽车的速度v0=36 km/h,驶至一斜率为驶至一斜率为0.010的斜坡时,关闭油门。设车与路面间的摩擦阻力为车的斜坡时,关闭油门。设车与路面间的摩擦阻力为车重重G的的0.05倍,问汽车能冲上斜坡多远?倍,问汽车能冲上斜坡多远?解法一:取汽车为研究对象。解法一:取汽车为研究对象。受力分析如图所示。受力分析如图所示。解:解: 设汽车能冲上斜坡的距离设汽车能冲上斜坡的距离为为s,此时汽车的末速度此时汽车的末速度为
35、为0。根据动能定理:。根据动能定理:解法二:取汽车和地球这一系统为研究对象,运用解法二:取汽车和地球这一系统为研究对象,运用系统的功能原理:系统的功能原理:以下同以下同解法一。解法一。 物体受力:重力的作用、摩擦力和正压力物体受力:重力的作用、摩擦力和正压力 。用功能原理进行计算,把物体和用功能原理进行计算,把物体和地球作为系统。地球作为系统。例例2-13 如图所示,一质量如图所示,一质量m=2 kg的物体从静止开始,的物体从静止开始,沿四分之一的圆周从沿四分之一的圆周从A滑到滑到B,已知圆的半径已知圆的半径R=4 m,设设物体在物体在B处的速度处的速度v=6 m/s,求在下滑过程中,摩擦力所
36、求在下滑过程中,摩擦力所作的功。作的功。解:解:摩擦力和正压力都是变力。正压力不做功。摩擦力和正压力都是变力。正压力不做功。三、机械能守恒定律三、机械能守恒定律若若 由质点系的功能原理:由质点系的功能原理: 则则机械能守恒定律(机械能守恒定律(law of conservation of mechanical energy):如果系统内非保守内力与外力做的功都为如果系统内非保守内力与外力做的功都为零,则系统内各物体的动能和势能可以互相转化,但零,则系统内各物体的动能和势能可以互相转化,但机械能的总值保持不变。机械能的总值保持不变。四、能量守恒定律四、能量守恒定律 对孤立系统:对孤立系统:能量守
37、恒定律(能量守恒定律(law of conservation of energy):):一一个孤立系统经历任何变化时,该系统的所有能量的总个孤立系统经历任何变化时,该系统的所有能量的总和是不变的,能量只能从一种形式变化为另外一种形和是不变的,能量只能从一种形式变化为另外一种形式,或从系统内一个物体传给另一个物体。它是自然式,或从系统内一个物体传给另一个物体。它是自然界最普遍的定律之一。界最普遍的定律之一。则则 由质点系的功能原理:由质点系的功能原理: 例例2-14 起重机用钢丝绳吊运一质量为起重机用钢丝绳吊运一质量为m 的物体,以速度的物体,以速度v0 做匀速下降,如图所示。当起重机突然刹车时
38、,物体做匀速下降,如图所示。当起重机突然刹车时,物体因惯性进行下降,问使钢丝绳再有多少微小的伸长?因惯性进行下降,问使钢丝绳再有多少微小的伸长?(设钢丝绳的劲度系数为设钢丝绳的劲度系数为k,钢丝绳的重力忽略不计。,钢丝绳的重力忽略不计。) 这样突然刹车后,钢丝绳所受的最大拉力将有多大?这样突然刹车后,钢丝绳所受的最大拉力将有多大?研究物体、地球和钢丝绳所组成的系统。研究物体、地球和钢丝绳所组成的系统。系统的机械能守恒。系统的机械能守恒。解:解: 首先讨论起重机突然停止的瞬首先讨论起重机突然停止的瞬时位置处的机械能,时位置处的机械能, 设物体因惯性继续下降的微小距离为设物体因惯性继续下降的微小距
39、离为h,并以并以这最低位置作为重力势能的零点,则有这最低位置作为重力势能的零点,则有 设这时钢丝绳的伸长量为设这时钢丝绳的伸长量为x0,则有则有 再讨论物体下降到最低位置时的机械能:再讨论物体下降到最低位置时的机械能:机械能守恒:机械能守恒:物体做匀速运动时,钢丝物体做匀速运动时,钢丝绳的伸长量绳的伸长量x0满足满足 最低位置时相应的伸长量最低位置时相应的伸长量x=x0+h是钢丝绳的最大伸是钢丝绳的最大伸长量,所以钢丝绳所受的最大拉力长量,所以钢丝绳所受的最大拉力 1. 第一宇宙速度第一宇宙速度已知:地球半径为已知:地球半径为R,质量为质量为mE,人,人造地球卫星质量为造地球卫星质量为m。要使
40、卫星在距要使卫星在距地面地面h 高度绕地球做匀速圆周运动,高度绕地球做匀速圆周运动,求其发射速度。求其发射速度。设发射速度为设发射速度为v1,绕地球的运动速度为绕地球的运动速度为v。机械能守恒:机械能守恒:万有引力提供向心力:万有引力提供向心力:例例2-15 讨论讨论宇宙速度宇宙速度得得 第一宇宙速度:第一宇宙速度:2. 第二宇宙速度第二宇宙速度宇宙飞船脱离地球引力而必须具有的发射速度。宇宙飞船脱离地球引力而必须具有的发射速度。(1) 脱离地球引力时,飞船的动能必须大于或等于零。脱离地球引力时,飞船的动能必须大于或等于零。(2) 脱离地球引力处,飞船的引力势能为零。脱离地球引力处,飞船的引力势
41、能为零。由机械能守恒:由机械能守恒:得得 3. 第三宇宙速度第三宇宙速度物体相对太阳的速度为物体相对太阳的速度为 物体脱离太阳引力所需的最小速度物体脱离太阳引力所需的最小速度 应满足应满足 地球相对太阳的速度:地球相对太阳的速度:物体相对于地球的发射速度:物体相对于地球的发射速度: 从地面发射物体要飞出太阳系,既要克服地球从地面发射物体要飞出太阳系,既要克服地球引力,又要克服太阳引力,所以发射时物体的动能引力,又要克服太阳引力,所以发射时物体的动能必须满足必须满足 第三宇宙速度:第三宇宙速度:*五、黑洞五、黑洞任何物体都被它的引力所约束,不管用多大的速度任何物体都被它的引力所约束,不管用多大的
42、速度都无法脱离,连光都跑不出来,称为都无法脱离,连光都跑不出来,称为黑洞。黑洞。对于质量为对于质量为mC的天体,若物体的逃逸速度为的天体,若物体的逃逸速度为 质量为质量为mC的黑洞的半径:的黑洞的半径:(史瓦西半径)(史瓦西半径)第一个黑洞的侯选者:第一个黑洞的侯选者:X射线双星天鹅座射线双星天鹅座X-1 太阳质量太阳质量RS=3 km 如果两个或几个物体在相遇中,物体之间的相互作如果两个或几个物体在相遇中,物体之间的相互作用仅持续一个极为短暂的时间,这些现象就是用仅持续一个极为短暂的时间,这些现象就是碰撞碰撞(collision)。如:撞击、打桩、锻铁等,以及微观粒如:撞击、打桩、锻铁等,以
43、及微观粒子间的非接触相互作用过程即散射(子间的非接触相互作用过程即散射(scattering)等。等。 讨论两球的讨论两球的对心碰撞对心碰撞或称或称正碰撞(正碰撞(direct impact):即碰撞前后两球的速度在两球的中心连线上。即碰撞前后两球的速度在两球的中心连线上。1. 碰撞碰撞过程系统过程系统动量守恒:动量守恒:2-6 碰撞碰撞2. 牛牛顿顿的的碰碰撞撞定定律律:碰碰撞撞后后两两球球的的分分离离速速度度(v2-v1),与与碰碰撞撞前前两两球球的的接接近近速速度度(v10-v20)成成正正比比,比比值值由由两两球球的的材材料料性性质质决决定定。即即恢恢复复系系数数(coefficien
44、t of restitution):): 完全非弹性碰撞(完全非弹性碰撞(perfect inelastic collision): e =0 v2=v1非弹性碰撞(非弹性碰撞(inelastic collision): 0 e m1,则,则 质量很小的质点与质量很大的静止质点碰撞后,调转运质量很小的质点与质量很大的静止质点碰撞后,调转运动方向,而质量很大的质点几乎保持不动。动方向,而质量很大的质点几乎保持不动。3. 若若v20=0, 且且m2m1, 则则 质量很大的质点与质量很小的静止质点碰撞后速度几乎质量很大的质点与质量很小的静止质点碰撞后速度几乎不变,但质量很小的质点却以近两倍的速度运动
45、起来。不变,但质量很小的质点却以近两倍的速度运动起来。讨论讨论非弹性碰撞:非弹性碰撞:碰后两球的速度为碰后两球的速度为 机械能损失:机械能损失:完全非弹性碰撞:完全非弹性碰撞:损失的机械能:损失的机械能:如打桩、打铁时如打桩、打铁时 m1/m2 越越大大,机械能损失越机械能损失越小。小。 打铁打铁m1/m2 越小,越小,机械能损失越大;机械能损失越大; 打桩打桩例例2-16 光滑桌面上,光滑桌面上, 质量为质量为m1的小球以速度的小球以速度u 碰在质碰在质量为量为m2的的静止小球上,静止小球上,u 与两球的连心线成与两球的连心线成 角角(称为称为斜碰斜碰 oblique impact )。 设
46、两球表面光滑,设两球表面光滑, 它们相互撞它们相互撞击力的方向沿着两球的连心线,击力的方向沿着两球的连心线, 已知恢复系数为已知恢复系数为e ,求求碰撞后两球的速度。碰撞后两球的速度。x、y方向动量分别守恒:方向动量分别守恒:解:解: 设设碰后两球碰后两球速度分别为速度分别为v1、v2 ,方向如图所示。方向如图所示。恢复系数:恢复系数:两个质量相等的小球发生弹性斜碰:两个质量相等的小球发生弹性斜碰: m1=m2 , e =1 时,有时,有 联立三个方程后求解,得联立三个方程后求解,得 讨论讨论引入质点引入质点对参考点对参考点O的角动量(的角动量(angular momentum):大小:大小:
47、 方向:右手螺旋定则确定方向:右手螺旋定则确定一、角动量(动量矩)一、角动量(动量矩) 由于动量由于动量 不能描述转动问题。不能描述转动问题。2-7 质点的角点的角动量和角量和角动量守恒定律量守恒定律 特例:特例:做圆周运动时,由于做圆周运动时,由于 ,质点对圆心的,质点对圆心的角动量大小为角动量大小为 ,大小不变,方向不变。大小不变,方向不变。 质点对圆心质点对圆心O的角动量为常量。的角动量为常量。二、角动量守恒定律二、角动量守恒定律定义合力定义合力 对参考点对参考点O的力矩的力矩:上式又写为上式又写为 角动量守恒定律(角动量守恒定律(law of conservation of angul
48、ar momentum):):如果作用在质点上的外力对某给定如果作用在质点上的外力对某给定点的力矩为零,则质点对该点的角动量在运动过程点的力矩为零,则质点对该点的角动量在运动过程中保持不变。中保持不变。若若则则(常矢量常矢量)由由表明小球对圆心的角动量保持不变。表明小球对圆心的角动量保持不变。实验:实验:质量为质量为m的小球系在的小球系在轻绳的一端,绳穿过一竖直轻绳的一端,绳穿过一竖直的管子,一手握管,另一手的管子,一手握管,另一手执绳。执绳。实验发现:实验发现: 则则解释:解释:作用在小球上的作用在小球上的有心力有心力对对力心力心的力矩为零,的力矩为零,故小球的角动量守恒。故小球的角动量守恒
49、。行星绕太阳的运动:行星绕太阳的运动: 作用在行星上的万有引力(有心力)对太阳(力作用在行星上的万有引力(有心力)对太阳(力心)的力矩为零,因此,行星在运动过程中,对太阳心)的力矩为零,因此,行星在运动过程中,对太阳的角动量保持不变。的角动量保持不变。 在有心力场中,关于力心的角动量守恒。在有心力场中,关于力心的角动量守恒。解:解:例例2-17 发射宇宙飞船去考察一质量发射宇宙飞船去考察一质量m1半径半径 R 的行星,的行星,当飞船静止于距行星中心当飞船静止于距行星中心 4R 处时,以速度处时,以速度 发射一发射一质量为质量为 m2 (m2远小于飞船质量远小于飞船质量)的仪器的仪器, 要使仪器
50、恰好要使仪器恰好掠着行星的表面着陆,掠着行星的表面着陆, 角角应是多少是多少? 着着陆滑行初速度滑行初速度 v 多大多大? 有心力场中,有心力场中, 运用角动量守恒和运用角动量守恒和(m1 , m2 )系统系统机械能守恒定律:机械能守恒定律:例例2-18 当质子以初速当质子以初速v0 通过质量较大的原子核时,原通过质量较大的原子核时,原子核可看作不动,质子受到原子核斥力的作用引起了子核可看作不动,质子受到原子核斥力的作用引起了散射,它运行的轨迹将是一双曲线,如图所示。求质散射,它运行的轨迹将是一双曲线,如图所示。求质子和原子核最接近的距离子和原子核最接近的距离rs。解:解: 原子核看作不动,取
51、原子核所在处为坐标原点原子核看作不动,取原子核所在处为坐标原点O。设原子核带电荷量为设原子核带电荷量为Ze,质子受到原子核的静电,质子受到原子核的静电斥力斥力 ,此力始终通过,此力始终通过O点。点。故质子对故质子对O点的角动量守恒,即点的角动量守恒,即式中式中b 是质子在无限远处的初速度是质子在无限远处的初速度v0 的方向线与原子核的方向线与原子核间的垂直距离,间的垂直距离,vs 是质子在离原子核最近处的速度。是质子在离原子核最近处的速度。在无限远处,质子的总能量为在无限远处,质子的总能量为在离原子核最近处,质子的总能量为在离原子核最近处,质子的总能量为(1)飞行过程中,质子的总能量也守恒,即
52、飞行过程中,质子的总能量也守恒,即(2)从方程(从方程(1)和()和(2)中消去)中消去vs,可得,可得一、对称性和守恒定律一、对称性和守恒定律 动量、能量和角动量守恒定律,基本上都是从牛动量、能量和角动量守恒定律,基本上都是从牛顿定律顿定律“推导推导”出来的,但是这些守恒定律比牛顿定出来的,但是这些守恒定律比牛顿定律有着更广泛的适用范围。这些基本量是和自然界的律有着更广泛的适用范围。这些基本量是和自然界的普遍属性普遍属性时空对称性联系在一起的时空对称性联系在一起的 。 对称性对称性又叫不变性:如果能对一个事物施加某种变换,又叫不变性:如果能对一个事物施加某种变换,并且变换以后的情况与原来的完
53、全相同,则这个事物并且变换以后的情况与原来的完全相同,则这个事物对于该种变换是对称的或不变的。对于该种变换是对称的或不变的。 物理定律具有空间均匀性即空间平移对称性、空物理定律具有空间均匀性即空间平移对称性、空间各向同性即空间转动对称性、时间均匀性即时间平间各向同性即空间转动对称性、时间均匀性即时间平移对称性移对称性 。 2-8 对称性和守恒定律称性和守恒定律 物理定律的一种对称性就对应一种守恒定律。物理定律的一种对称性就对应一种守恒定律。 物理定律在时间平移、空间平移和转动下的不变物理定律在时间平移、空间平移和转动下的不变性要求对物质系统的运动作出限制,这些限制就是系性要求对物质系统的运动作
54、出限制,这些限制就是系统在运动中必须遵守的能量守恒、动量守恒和角动量统在运动中必须遵守的能量守恒、动量守恒和角动量守恒等定律。守恒等定律。 二、守恒量和守恒定律二、守恒量和守恒定律 有些物理量在质点系内所发生的变化过程中始终有些物理量在质点系内所发生的变化过程中始终保持不变,这些量就是保持不变,这些量就是守恒量守恒量。 研究自然现象中显现的各种守恒量和守恒定律,研究自然现象中显现的各种守恒量和守恒定律,是人们认识自然规律的一个重要方面。根据守恒量和是人们认识自然规律的一个重要方面。根据守恒量和守恒定律的分析,可以揭示出基本粒子的属性和粒子守恒定律的分析,可以揭示出基本粒子的属性和粒子间相互作用
55、的性质,而一旦某种对称性遭到破坏(称间相互作用的性质,而一旦某种对称性遭到破坏(称为为对称性破缺对称性破缺),那必是有了新的发现。),那必是有了新的发现。对称性与守恒定律对应表对称性与守恒定律对应表 不可测不可测 性性物理规律变换不变性物理规律变换不变性 守恒定律守恒定律 精确程度精确程度 时间绝对性时间绝对性 时间平移时间平移 能能 量量 精精 确确 空间绝对位置空间绝对位置 空间平移空间平移 动动 量量 精精 确确 空间绝对方向空间绝对方向 空间转动空间转动 角角 动动 量量 精精 确确 空间左和右空间左和右 空间反演空间反演 宇宇 称称 在在弱弱相互作用中破缺相互作用中破缺 惯性系等价惯
56、性系等价 伽利略变换伽利略变换 洛伦兹变换洛伦兹变换 时时空空绝对性绝对性 时空四维间隔时空四维间隔 四维动量四维动量 v c 近似成立近似成立 精精 确确 精精 确确带电粒子与中性带电粒子与中性粒子的相对相位粒子的相对相位 电荷规范变换电荷规范变换 电电 荷荷 精精 确确重子与其他粒子重子与其他粒子的相对相位的相对相位 重子规范变换重子规范变换 重子数重子数 精精 确确轻子与其他粒子轻子与其他粒子的相对相位的相对相位 轻子规范变换轻子规范变换 轻子数轻子数 精精 确确时间流动方向时间流动方向 时间反演时间反演 破缺(原因不明)破缺(原因不明)粒子与反粒子粒子与反粒子 电荷共轭电荷共轭 电荷电荷 宇称宇称 在弱相互作用中破缺在弱相互作用中破缺