《糖类生物化学》由会员分享,可在线阅读,更多相关《糖类生物化学(171页珍藏版)》请在金锄头文库上搜索。
1、第二章第二章 糖生物化学糖生物化学54第一节、糖类化学概论第一节、糖类化学概论一、糖的概念与分类一、糖的概念与分类1、糖的概念与化学本质、糖的概念与化学本质o简单的定义简单的定义:多羟基的醛类:多羟基的醛类或酮类化合物,以及它们的或酮类化合物,以及它们的衍生物或聚合物。衍生物或聚合物。o元素组成元素组成:CH2O ,可以写,可以写成成Cm(H2O)no由通式看糖似乎是由由通式看糖似乎是由Carbon+HydrateCarbon+Hydrate组成的,组成的,所以起初人们认为糖是碳的所以起初人们认为糖是碳的“水化物水化物”,所,所以把糖又称为碳水化合物(以把糖又称为碳水化合物(Carbohydr
2、ateCarbohydrate) ) 。o有些糖并不附合上面的通式,例如:脱氧糖;有些糖并不附合上面的通式,例如:脱氧糖;而甲醛而甲醛(CH(CH2 2O) O) ,乙酸,乙酸(C(C2 2H H4 4O O2 2) ) ,乳酸,乳酸(C(C3 3H H6 6O O3 3) )等则不属于糖类。等则不属于糖类。o在生化研究中,糖的衍生物也属于研究范围。在生化研究中,糖的衍生物也属于研究范围。如:氨基糖、磷酸糖等。如:氨基糖、磷酸糖等。常用单词、前缀和后缀常用单词、前缀和后缀o单词单词nsugar, carbohydrate, saccharideso前缀前缀nGlycobiology, Glyc
3、oprotein, Glycolipido后缀后缀n-ose, -saccharide or -glycan oGlucose(葡萄糖), Fructose(果糖), Galactose(半乳糖), Sucrose(蔗糖)2、糖的分类、糖的分类(classification)o1)单糖单糖(monosaccharide):是多):是多羟醛或多羟酮羟醛或多羟酮 不能被水解变成更简单的糖的糖类(更不能被水解变成更简单的糖的糖类(更小分子的糖)。小分子的糖)。 碳原子数目碳原子数目:丙糖丙糖(triose),丁糖,丁糖(terose),戊糖,戊糖(pentose)、己糖、己糖(hexose)庚糖庚糖
4、(Heptose)辛糖辛糖(Octose)。 醛糖醛糖(aldose 如:葡萄糖如:葡萄糖glucose)、)、酮糖酮糖(Ketose 如:果糖如:果糖fructose)。o2)寡糖寡糖(oligosaccharide):又称):又称低聚糖,由低聚糖,由210分子单糖由糖苷键连接而分子单糖由糖苷键连接而成。可分为二糖(最常见)、三糖、四糖、成。可分为二糖(最常见)、三糖、四糖、 五糖等。五糖等。 如如: 麦芽糖麦芽糖(maltose,蔗糖Glc(1-2)果糖Fru); 乳糖乳糖(lactose, -D-半乳糖(gal)与D-葡萄糖( glc )通过1,4糖苷键连接); 蔗糖蔗糖(sucrose
5、, -D-葡萄糖通过1,4糖苷键连接)。o3 3). .多糖多糖(polysaccharidepolysaccharide):由多分):由多分子单糖或单糖的衍生物聚合而子单糖或单糖的衍生物聚合而成。成。 同多糖同多糖 (homopolysaccharidehomopolysaccharide):由):由同一种单糖聚合而成,如淀粉、同一种单糖聚合而成,如淀粉、糖原、纤维素等。糖原、纤维素等。 杂多糖杂多糖(heteropolysaccharideheteropolysaccharide):):由不同种由不同种 单糖或单糖的衍生物单糖或单糖的衍生物聚合而成,如透明质酸等。聚合而成,如透明质酸等。o
6、4)、结合糖结合糖(复合糖,糖缀合物复合糖,糖缀合物):糖类还可:糖类还可和非糖物质如脂类、蛋白质等结合形成复合和非糖物质如脂类、蛋白质等结合形成复合糖(糖(complex saccharide) 如肽聚糖、脂多糖、糖蛋白如肽聚糖、脂多糖、糖蛋白(蛋白聚糖蛋白聚糖)、糖糖-核苷酸等核苷酸等 糖作为功能分子,主要是复合多糖。糖作为功能分子,主要是复合多糖。 o5)、糖的衍生物:糖醇、糖酸、糖胺、糖苷糖的衍生物:糖醇、糖酸、糖胺、糖苷二、糖的分布及其重要性二、糖的分布及其重要性 糖是世界上存在最多的一类有机化合物,也是糖是世界上存在最多的一类有机化合物,也是人类所需要的最基础的物质。几乎所有的动物
7、、植人类所需要的最基础的物质。几乎所有的动物、植物和微生物体内都含有糖类物和微生物体内都含有糖类 糖的世界糖的世界o食用食用糖糖 蔗糖蔗糖 (sucrose)sucrose)o医医疗疗用用糖糖glucoseglucose及及其其衍衍生生物物,如如葡葡萄萄糖糖酸酸的的钠钠、钾钾、钙、锌盐等钙、锌盐等 ;o绿色植物的绿色植物的皮皮、杆杆等多糖等多糖cellulosecellulose;o粮食粮食及及块根块根、块茎块茎中的糖中的糖starchstarch;o动物体内的动物体内的贮藏多糖贮藏多糖glycogenglycogen;o昆虫、蟹、虾等昆虫、蟹、虾等外骨骼糖外骨骼糖chitinchitin;o
8、食用菌食用菌中的糖中的糖 香菇多糖香菇多糖Lentinan Lentinan 、茯苓多糖、茯苓多糖Pachymaran Pachymaran 、灵芝多糖、灵芝多糖Ganoderma lucidum Ganoderma lucidum polysaccharidepolysaccharide 、昆布多糖昆布多糖LaminarineLaminarine等等 ;o细菌、酵母的细菌、酵母的细胞壁糖细胞壁糖; ;o结缔组织中的糖结缔组织中的糖 肝素、透明质酸、硫酸软骨肝素、透明质酸、硫酸软骨素、硫酸皮肤素等素、硫酸皮肤素等; ;o核酸核酸的糖、的糖、脂多糖脂多糖 糖脂糖脂 、糖蛋白糖蛋白 蛋白聚糖蛋白聚
9、糖 中的中的糖糖; ;o细胞膜细胞膜及其他细胞结构中的及其他细胞结构中的糖以及其他生物糖以及其他生物活性糖活性糖分子。分子。糖类的主要生物学作用糖类的主要生物学作用o1是生物体主要的是生物体主要的能量来源能量来源。 生物体内的能源来源主要是通过糖的氧化获得的。o2可转变为生命所必需的其它物质,如脂可转变为生命所必需的其它物质,如脂类、类、 蛋白质等。蛋白质等。 构成生物有机体中包括蛋白质、核酸、脂类在内的各种有机物质的碳架都是直接或间接地由糖类物质转化而来的,所以糖是生物体合成其它化合物的基本原料。o3可作为生物体的可作为生物体的结构物结构物质。质。 如纤维素、它是构成植物细胞壁的主要成份。几
10、丁质和肽聚糖是构成微生物细胞壁的主要成份。还有些多糖作为动物细胞外的间质中的构造分子。o4. 作为细胞、生物体的作为细胞、生物体的贮藏物质贮藏物质如植物里合成淀粉,动物细胞中有糖原等。o5可作为细胞识别的可作为细胞识别的信息分子信息分子。 参与细胞与细胞的识别(分子识别)与细胞通讯; 参与病毒的吸附及抗原抗体的反应。 提要:o糖,单糖,寡糖,多糖,结合糖o糖的生物学意义o单词单词nsugar, carbohydrate, saccharideso前缀前缀nGlycobiology, Glycoprotein, Glycolipido后缀后缀n-ose, -saccharide or -glyc
11、an oGlucose(葡萄糖), Fructose(果糖), Galactose(半乳糖), Sucrose(蔗糖)第二节、单糖第二节、单糖o一、单糖的分子结构一、单糖的分子结构1、单糖的链状结构2、单糖的环状结构3、单糖的构象o二、单糖的性质o三、重要的单糖及其衍生物1 1、单糖的链状结构:、单糖的链状结构:1)1)、确定链状结构的方法(葡萄确定链状结构的方法(葡萄糖):糖):o经元素组成和相对分子质量测定确定经元素组成和相对分子质量测定确定分子式;分子式;o与与FehlingFehling试剂或其它醛试剂反应,说试剂或其它醛试剂反应,说明含有醛基;明含有醛基;o与乙酸酐反应,产生具有五个
12、乙酰基与乙酸酐反应,产生具有五个乙酰基的衍生物;说明葡萄糖分子内有的衍生物;说明葡萄糖分子内有5 5个羟基个羟基 o用钠、汞剂作用,生成直链的山梨醇。用钠、汞剂作用,生成直链的山梨醇。 以上说明葡萄糖是个链状的多羟醛以上说明葡萄糖是个链状的多羟醛Glucose2)、构型、构象与同分异构、构型、构象与同分异构o构型构型(configuration)(configuration):分子中由于各原子或基团间特有的固定的空间排列方式不同而使它呈现出不同的稳定的立体结构。o构象构象(conformation)(conformation):由于分子中的某个原子(基团)绕C-C单键自由旋转而形成的不同的暂时
13、性的易变的空间结构形式。同分异构体同分异构体(isomerism)同分异构体同分异构体(isomerism):具有相同的元素组成,即分子式相同但分子结构不同的化合物。o结构异构(结构异构(structural isomerism):分子中原子连接次序(构造(constitution)的不同造成,用结构式表示。o立体异构(立体异构(stereoisomerism):具有相同的结构式,但原子空间的分布(即构型,configuration)不同。可以分为几何(顺反)异构和旋光(光学)异构立体异构立体异构o几何异构(顺反异构):由于分子中双键或刚性结构的存在造成的两侧的基团不能自由旋转。o旋光异构:旋
14、光异构:由于分子内不对称原子(最常见为碳原子),连接在这个原子上面的四个基团由于空间取向的不同,这些基团在空间有两种方式,因此形成了两种不同的化合物(也只能形成两种,称之为对映体对映体)。o它们如同左右手的关系一样,有相同的沸点,相同的熔点,相同的溶解度,重要的差别在生物学生物学和旋光性旋光性上。旋光性(optical activity)o旋光物质使平面偏振光(Plane polarized liyot)的偏振面发生旋转的能力称旋光性、光学活性或旋光度。o使平面偏振光的偏振面沿顺时针方向偏转,称为右旋型异构体(dextrorotary),用“”表示;o使平面偏振光的编振面逆时针方向偏转,称左旋
15、异构体(levorotary)用“”表示。甘油醛的构型(DL、RS表示法)o1906年人为规定右旋甘油醛为D型,左旋甘油醛为L型。3)、单糖糖链状结构表示方式、单糖糖链状结构表示方式o一般用一般用Fisher投影式:投影式:碳碳骨架竖直写;氧化程度最骨架竖直写;氧化程度最高的碳原子在上方,高的碳原子在上方,水平水平方向的键伸向纸面前方,方向的键伸向纸面前方,垂直方向的键伸向纸面后垂直方向的键伸向纸面后方方。o透视式:透视式:4)、单糖的旋光异构o单糖从丙糖到庚糖,除二羟丙酮外,都含有手性碳原子(C*) 离醛基或酮基最远的手性碳的构型确定糖离醛基或酮基最远的手性碳的构型确定糖的的DL构型构型o卢
16、森诺夫(Rosanoff)规定,凡单糖中直链分子式最末的一个不对称碳原子的构型与D-甘油醛一致的就称其为D型糖,它的对映体就是L型糖。任何糖都可以看作是由甘油醛或二羟丙酮派生出来的。oDL 仅指一种构型,指以甘油醛为标准而确定的相对构型,不表示旋光方向。旋光方向是以(+)(-) 来加以表示的。构型与旋光性之间没有必然的对应规律5)、D系单糖和系单糖和L系单糖系单糖 所有的醛糖都可以看成是甘油醛的醛基碳下端逐个插入C*延伸而成。D-甘油醛衍生而来的称D系醛糖,由L-甘油醛衍生而来的称L系醛糖。L系醛糖是相应D系醛糖的对映体。 含有n个C*的化合物,旋光异构体的数目为2n,组成2n/2对对映体。6
17、)、差向异构体差向异构体(epimer): 又又称表异构体,只有一个不对称碳原子上的基团排列方式不同的非对映异构体,如D-葡萄糖与D-甘露糖及D-半乳糖。2、单糖的环状结构 1)、单糖的环状结构的证据o、变旋现象(mutarotation):一般醛类在水溶液中只有一个比旋度,但新配制的葡萄糖水溶液的比旋随时间而变化。 =+112 称-D-(+)葡萄糖 =+18.7 称-D-(+)葡萄糖 将这两种葡萄糖分别溶于水后,其旋光率都逐渐变为+52.7,这一现象称变旋现象。 变旋是由于分子立体结构发生某种变化的结果。o、不象醛类那样形成缩醛,而是只和一分子的醇形成半缩醛(Hemiacetals)o、葡萄
18、糖的醛基不能象一般醛类那样与Schiff试剂(品红-亚硫酸)起反应发生紫红色反应,即不能使被亚硫酸漂白了的品红呈现红色。葡萄糖也不能与亚硫酸氢钠起加成反应等.2)、Fisher环状结构o1893年Fisher提出环状结构说。o半缩醛羟基与末端手性C(即决定构型的羟基;C5上的羟基)在同一侧的为-型,不在同一侧的为-型。(异头物)异头物(体)(anomer)o单糖由直链结构变成环状结构后,羰基碳原子成为新的手性中心,导致C1差向异构化,产生两个非对映异构体(-D-葡萄糖,-D-葡萄糖),由于差向的位置是第一位C,因此也叫异头体(物)。练习:1、环状己醛糖有多少个可能的旋光异构体?25322、判断
19、:醛式葡萄糖变成环状后无还原性。 正确Haworth式(投影式) 不论是D型还是L型,异头碳羟基与末端羟甲基是反式的为异头物,顺式为异头物。D D葡萄糖由葡萄糖由FischerFischer式改写为式改写为HaworthHaworth式的步骤式的步骤3)、吡喃糖和呋喃糖o开链的单糖形成环状半缩醛时,最容易出现五元环(呋喃)和六元环(吡喃)。oD-葡萄糖在水溶液中主要以吡喃糖存在,呋喃糖次之。oD-果糖在水溶液中主要以呋喃糖存在,吡喃糖次之。练习:以下化合物中(1)哪个是半缩酮形式的酮糖?(2)哪个是吡喃戊糖?(3) 哪个是-D-醛糖? (4)哪个是-L-醛糖?答案:(1)C;(2)D;(3)B
20、;(4)D3、单糖的构象o1)、构象)、构象(conformation):由于分子中的某个原子(基团)绕C-C单键自由旋转而形成的不同的暂时性的易变的空间结构形式。空间位置的改变,不涉及共价键的断裂。 处于最低能位状态的构象叫优势构象。2)、构象的描绘方法 各种不同的构象由于绕单键旋转可以迅速互变3)、吡喃糖的构象 吡喃糖环常采取吡喃糖环常采取椅式椅式(chair)(chair)和船式和船式(boat)(boat)构象。构象。o吡喃葡萄糖船式的内能比椅式高,因此椅式构象远吡喃葡萄糖船式的内能比椅式高,因此椅式构象远比船式构象稳定比船式构象稳定椅式构象有两种可以互换的可能形式o椅式构象有两种可以
21、互换的可能形式,互换结果是每个C上的直立键和平伏键互换o直立键相连的取代基要比经平伏键连接的取代基彼此靠的更近,斥力也更大o因此占优势的构象应该是比氢原子大的基团尽可能多的处于平伏键的位置D吡喃葡萄糖是D己醛糖中唯一一个能采取使所有比氢原子大的基团都处于平伏键的构象提要(单糖的分子结构单糖的分子结构):o构型构型(configuration)及其相关概念及其相关概念oFisher投影式,主要单糖的投影式,缩写投影式,主要单糖的投影式,缩写o糖的DL构型o变旋现象(mutarotation)o异头物(体) ( anomer) o构象构象(conformation)o吡喃糖的构象 第二节、单糖第二
22、节、单糖o一、单糖的分子结构一、单糖的分子结构o二、单糖的性质二、单糖的性质 1、单糖的物理性质 2 2、单糖的化学性质o三、重要的单糖及其衍生物三、重要的单糖及其衍生物1、单糖的物理性质o1)、旋光性和变旋性: 是鉴定糖(所有)的一个重要指标。 变旋现象:伴随着异构体间的转变,糖溶液的旋光度也随着转变,这种现象称为变旋现象。o2)、甜度:以蔗糖的甜度为标准(100) 糖及甜味剂 甜度 糖及甜味剂 甜度蛇菊苷30000应乐果甜蛋白20000果糖 转化糖 蔗糖 葡萄糖 木糖糖精 173.3 130 100 74.3 40 50000鼠李糖 麦芽糖 半乳糖 棉子糖 乳糖天冬苯丙二肽 32.5 32
23、.5 32.1 22. 6 16.1 15000o3)、溶解性:易溶于水而难溶于乙醚、丙酮等有机溶剂2 2、单糖的化学性质 单糖是多羟基的醛或者酮,其化学性质由醛基、酮基或醇基决定。D-GlcD-葡萄糖葡萄糖1 1,2-2-烯醇式烯醇式葡萄糖葡萄糖DFruD-果糖果糖DManD-甘露糖甘露糖Ba(OH)2Ba(OH)2Ba(OH)21 1)、异构化(弱碱的作用)、异构化(弱碱的作用p15p15) 在碱性水溶液中单糖在碱性水溶液中单糖发生分子重排,通过烯二醇发生分子重排,通过烯二醇中间物互相转化,称之为酮中间物互相转化,称之为酮烯醇互变异构烯醇互变异构2 2)、单糖的氧化()、单糖的氧化(p16
24、p16)o弱氧化剂:常用含Cu2+的碱性溶液,氧化成糖酸 Fehling试剂:CuSO4、NaOH、酒石酸钾钠 Benedict试剂:CuSO4、Na2CO3、柠檬酸钠为常用的定量测定还原糖的试剂 o温和氧化剂氧化成醛糖酸;Br2H2Oo强氧化剂氧化成醛糖二酸:如浓HNO3Br2H2O(仅限醛糖)浓浓HNO3(生物体内)(生物体内)糖酸糖酸醛糖醛糖糖二酸糖二酸糖醛酸糖醛酸3 3)、单糖的还原()、单糖的还原(p17p17)HD-GlcD葡萄醇葡萄醇(山梨醇)(山梨醇)HD甘露糖(甘露糖(D-man)D甘露醇甘露醇HHDFruD葡萄醇葡萄醇D甘露醇甘露醇o单糖的羰基在适当的还原剂如NaBH4存在
25、条件下能被还原成多元醇4)、形成糖脎( Osazone,p18) 许多糖可以与苯肼(C6H5NHNH2)反应生成浅黄色的晶体脎。各种糖的糖脎都有特异的晶形和熔点,因此常用糖脎的生成鉴定各种不同的糖。练习练习:判断:判断:D-D-葡萄糖葡萄糖,D-,D-甘露糖和甘露糖和D-D-果糖生成同一种糖脎果糖生成同一种糖脎。 5 5)、脱水反应)、脱水反应 单糖在稀的无机酸中是稳定的,但是在强无机酸(如:12%盐酸) 中加热时可引起糖脱水形成糠醛类物质。 糖 糠醛或糠醛衍生物 紫色 浓H2SO4脱水- 萘酚 Molisch反应可以鉴定糖的存在。- 萘酚oMolisch反应oSeliwanoffs test
26、 (西里瓦诺夫试验,p20) Seliwanoff反应可以鉴定酮糖的存在。间苯二酚6)、成苷反应(缩醛)糖可以与醇或胺形成糖苷。糖可以与醇或胺形成糖苷。糖环中的半缩醛的羟基很活泼,易与其它的醇或酚上的羟基发生反应,失水而成为缩醛糖苷,非糖部分叫配糖体,形成的C-O苷键称为O-糖苷键。糖环中的半缩醛也可以与胺中的氮原子反应成苷,称为N-糖苷键。N-糖苷键存在于糖蛋白和核苷中。 单糖可以通单糖可以通过过O-糖苷键相互糖苷键相互连接形成寡糖和连接形成寡糖和多糖。多糖。糖蛋白中的糖苷键。核苷中的糖苷键。7)、成酯反应 由于单糖是多元醇,当与酸作用时可以生成酯。在生物体内最常见的一类碳水化合物就是糖的磷
27、酸酯。它是糖在酶的作用下与ATP反应生成的。是糖代谢的必须步骤。第二节、单糖第二节、单糖o一、单糖的分子结构一、单糖的分子结构o二、单糖的性质二、单糖的性质o三、重要的单糖及其衍生物三、重要的单糖及其衍生物1、重要的单糖n醛糖:甘油醛、 D-赤藓糖、 D-木糖、D-核糖、L-阿拉伯糖、D-葡萄糖、D-半乳糖及D-甘露糖 酮糖:二羟基丙酮、D-赤藓酮糖、D-核酮糖、D-木酮糖、D-果糖、D-景天庚酮糖 2、重要的单糖衍生物o1、氨基糖(例如葡萄糖胺,半乳糖胺,甘露糖胺,N-乙酰葡萄糖胺等) o2、脱氧糖 (例如岩藻糖 ( fucose), 脱氧核糖等)o3、糖酸 (例如葡萄糖酸(gluconat
28、e),葡萄糖醛酸(glucuronate ))o4、糖醇o5、糖苷1)、氨基糖(p30) 氨基糖常存在于结构多糖中,如细菌细胞壁中的肽聚糖(peptidoglycan),是由N-乙酰-D-葡萄糖胺(NAG, GlcNAc)和 N-乙酰胞壁酸(NAM)形成的杂多糖;节肢动物外骨骼中的几丁质(chitin),是由 N-乙酰-D-葡萄糖胺形成的同多糖。常见单糖及其衍生物的缩写 单糖常缩写为三个字母,如葡萄糖 Glucose,半乳糖 galactose, 果糖fructose,甘露糖(Mannose)可分别缩写为 Glc, Gal, Fru,Man。(P31)2)、脱氧糖 (Deoxy sugars,
29、p29)3)、糖酸(酸性单糖,p28) 重要的糖酸有糖醛酸、糖二酸、和糖酸 葡萄糖醛酸在肝中可与有毒物质如醇、酚等结合变成无毒化合物由尿排出体外,可达到解毒作用。葡糖酸能够与钙铁等离子形成可溶性盐,作为药物易被吸收4)、糖醇(p26)o几种重要单糖的糖醇在自然界中都有存在,是生物体的代谢产物。不少糖醇也是工业产品,并用于食品和制药工业。 5)、单糖磷酸酯(p25)第三节、寡糖o一、二糖一、二糖(Disaccharides)(Disaccharides)o二、其他简单寡糖二、其他简单寡糖一、二糖(Disaccharides)o二糖由两个单糖以糖苷键的形式连接,其中一个是糖体,另一个叫配(糖)体,
30、天然存在的双糖多数以双已糖为主。o根据与裴林试剂的反应性,可以把双糖区分为还原性糖和非还原性糖。o蔗糖(蔗糖( Sucrose Sucrose ), ,乳糖(乳糖( lactose lactose ) 和麦和麦芽糖(芽糖( maltose maltose )是自然界最为丰富的二糖。)是自然界最为丰富的二糖。1、蔗糖(Sucrose)o蔗糖由-D-葡萄糖(glc)与 -D-果糖(fru)通过各自的异头碳羟基连接,为非还原性糖。缩写为Glc(1-2)Fru, 或者Fru(2-1)Glc。2、乳糖(Lactose)o乳糖主要存在于乳汁中,由-D-半乳糖(gal)与D-葡萄糖( glc )通过1,4糖
31、苷键连接,为还原性二糖。 缩写为Gal(1-4)Glc。3、麦芽糖麦芽糖( Maltose Maltose )o麦芽糖是淀粉的水解产物,由麦芽糖是淀粉的水解产物,由两个两个-D-葡萄葡萄糖糖通过通过1,4糖苷糖苷键键连接而成,为还原性二糖。连接而成,为还原性二糖。缩写为缩写为Glc( 1-4)Glc。4、海藻糖(Trehalose)o海藻糖是D-葡萄糖基(-1,1)-D葡萄糖苷,它的两个半缩醛羟基相缩合,为非还原糖。 在蕨类中代替蔗糖成为主要的可溶性储存糖,在昆虫中用作主要血循环糖。 海藻糖酶降解为葡萄糖5、纤维二糖(Cellobiose)o纤维二糖是两个D-葡萄糖通过-1,4糖苷键连接而成的
32、。第三节、寡糖o一、二糖一、二糖(Disaccharides)(Disaccharides)o二、其他简单寡糖二、其他简单寡糖二、其他简单寡糖(p39)o1、三糖n棉籽糖棉籽糖 (Raffinose) 棉子糖由-半乳糖,-葡萄糖,和-呋喃果糖聚合而成。(1,6糖苷键,1,2糖苷键)o2、四糖n水苏糖水苏糖 (Stachyose):棉籽糖家族的一:棉籽糖家族的一员,四糖,第二个,四糖,第二个乳糖通乳糖通过1,6糖苷键连接到棉籽糖的半乳糖残基上o3、环糊精 芽孢杆菌属有些种环糊精转葡萄糖基移酶作用于淀粉形成。一般由6、7或者8个葡萄糖单位通过1,4糖苷糖苷键键连接而成。连接而成。第四节、多糖o一、
33、概述一、概述o二、同多糖o三、杂多糖一、概述一、概述o多糖(多糖(Polysaccharides)也称之为聚糖,是由很多单糖单位构成的高分子糖类物质,是自然界中糖类的主要存在形式。 储存多糖(storage Polysaccharides ):淀粉、糖原、菊粉等 结构多糖(structural Polysaccharides ):如纤维素、壳多糖、杂多糖等o同多糖(均一性多糖)(Homopolysaccharides): 组成单体糖基相同,例如淀粉(starch), 糖原(glycogen), 纤维素(cellulose) ,几丁质(chitin).o杂多糖(Heteropolysacchar
34、ides): 组成的单体糖基有两种或两种以上。第四节、多糖o一、概述一、概述o二、同多糖二、同多糖o三、杂多糖1、淀粉(starch)o淀粉是植物体内贮藏最多而最重要的多糖。o根据结构可分为: 直链淀粉直链淀粉( amylose ) 支链淀粉支链淀粉( amylopectin )1)直链淀粉)直链淀粉o直链淀粉由直链淀粉由D-Glc通过通过1-4键连接而成。键连接而成。o每个分子平均每个分子平均250-300250-300个个 -D-Glc-D-Glc,淀粉高级结构o1-4糖苷键连接导致葡萄糖残基组成的多聚体紧密盘绕为螺旋结构(每每6 6个个GlcGlc残基盘旋一圈残基盘旋一圈)。直链淀粉遇碘
35、显兰色。2)支链淀粉n支链淀粉由2000-22000个Glc残基组成,大约每30个1-4键连接的葡萄糖处有一个1-6糖苷键连接的葡萄糖分支。支链淀粉与与KI-IKI-I2 2显紫色。o每一个直链淀粉分子都有一个非还原端和一个还原端,但每一个支链淀粉和糖原分子都有一个还原端和多个非还原端。2、糖原(glycogen)o糖原是动物的贮存多糖,细菌细胞中也有存在,细菌细胞中也有存在,肝脏、肌肉中含量多,分别称为肝糖元、肌糖元。遇碘显红紫色。o糖原结构与支链淀粉相似,主要是-吡喃葡萄糖,按-1,4糖苷键缩合而的,糖原的分支程度比支链淀粉更高。分支多(每隔4个葡萄糖残基便有一个分支,含有大量的非原性端)
36、;分枝短(一般是8-12葡萄糖残基。 );分子量高达106-108o食物中的淀粉和糖原可被唾液和肠液中的-淀粉酶降解,从非还原端开始,断裂葡萄糖残基之间的1,4糖苷键。3、纤维素(cellulose)o绿色植物体内约有50%碳存在于以纤维素的形式。o纤维素类似直链淀粉,由10,000至 15,000个D-Glc残基组成,但残基之间是由-D-葡萄糖分子以-(1-4)糖苷键相连而成直链。o1-4键使得纤维素多糖链采取伸展的构象平行排列,链间和链内存在大量的氢键,形成平行的纤维束。 大多数动物都缺乏裂解纤维素的酶,但有些动物(如白蚁和反刍动物)可以利用体内共生微生物分泌的纤维素酶来消化纤维素。一些真
37、菌能分泌纤维素酶。4、几丁质几丁质 (壳多糖)( Chitin ) 几丁质大量存在于昆虫和甲壳类动物的甲壳中,也是许多真菌细胞壁常见的组成成分。在天然聚合物中,除纤维素外,几丁质的贮量占第二位。o几丁质几丁质 是由N-乙酰葡萄糖胺残基通过1-4键连接而成的线状不分支的同多糖。o几丁质与纤维素之间唯一的化学差别是后者C-2上的羟基被前者的乙酰氨基取代。几丁质衍生物在保健及医疗上的应用几丁质衍生物在保健及医疗上的应用 主要生理功能:主要生理功能: 1. 1. 强化免疫;强化免疫;2 2排除毒素;排除毒素;3 3降血糖,降血脂,降血压;降血糖,降血脂,降血压;4 4强化肝脏机能;强化肝脏机能;5 5
38、活化细胞,抑制老化;活化细胞,抑制老化;6 6调节自律神经调节自律神经 。5、其它同多糖o菊粉(inulin),是由31个果糖残基通过-1,2-糖苷键连接的果聚糖,另有12个葡萄糖残基。很多植物的储存多糖,如大丽菊的块茎。o甘露聚糖在酵母细胞壁中存在,以-1,4糖苷键连接。o在一些微生物中存在有另外的一些葡聚糖,常常是1,6,或1,3链连接的。第四节、多糖o一、概述一、概述o二、同多糖二、同多糖o三、杂多糖三、杂多糖o杂多糖(不均一性多糖)在动植物中广泛存在,在水解时产生含许多种单糖的混合物及其衍生物。简单的杂多糖由重复的混合双糖所构成。 果胶果胶 ( (Pectin) ) 半纤维素半纤维素
39、( (Hemicellulose) ) 琼脂琼脂 (Agar) 和和琼脂糖琼脂糖 ( (Agarose) ) 糖胺聚糖(或称粘多糖)糖胺聚糖(或称粘多糖) ( (Glycosaminoglycan) ) 1、植物杂多糖、植物杂多糖1)、果胶(pectin)o果胶是最复杂的一类多糖,通常指各种程度甲基酯化的-1,4-半乳糖醛酸聚糖.o果胶类物质的化学组成,主要以-1,4糖苷键键合的D半乳糖醛酸为基本结构.其羧基部分或全部甲基酯化,有些含有-1,2连接的鼠李糖残基。 2)、半纤维素(hemocellulose) 是植物细胞壁中非纤维素、非果胶的一类多糖物质,易溶于碱,它是几种物质的混合物,根据已研
40、究过的材料,半纤维素主要包括多糖类物质(多缩戊糖和多缩已糖的聚合物)。 D-木聚糖(D-xylan)、D-葡糖-D-甘露聚糖、D-半乳-D-葡-D-甘露聚糖、L-阿拉伯糖,D-半乳聚糖3)、琼脂(agar)o琼脂是海藻多糖的一类,它是一组多糖的通称,琼脂糖是琼脂的主要组分。o琼脂糖(agarose)是由是由D-吡喃半乳糖和吡喃半乳糖和3,6-脱水脱水-L-吡喃半乳糖两个单位交替组成吡喃半乳糖两个单位交替组成的线性链。的线性链。2 2、糖胺聚糖(或称粘多糖)、糖胺聚糖(或称粘多糖) ( (Glycosaminoglycan) )o粘多糖粘多糖 mucopolysaccharides 、糖胺聚、糖
41、胺聚 多多 糖糖 glycosaminoglycans 、氨基多糖、氨基多糖polyaminoglucosepolyaminoglucose及酸性糖胺聚糖等名称。及酸性糖胺聚糖等名称。o分布很广,大多以蛋白多糖分布很广,大多以蛋白多糖proteoglycanproteoglycan存存在,并进一步与胶原蛋白结合构成结缔组织在,并进一步与胶原蛋白结合构成结缔组织机质的重要成分,如透明质酸、硫酸软骨素、机质的重要成分,如透明质酸、硫酸软骨素、硫酸皮肤素等。硫酸皮肤素等。组织类型组织类型机械性能机械性能蛋白质蛋白质碳水化合物碳水化合物骨质骨质负荷重量负荷重量I型胶原蛋白型胶原蛋白硫酸软骨素硫酸软骨素
42、抗压、维持外形抗压、维持外形透明质酸透明质酸硫酸角质素硫酸角质素软肋骨软肋骨抗压、减少摩擦抗压、减少摩擦II型胶原蛋白型胶原蛋白硫酸软骨素硫酸软骨素弹性好弹性好(硫酸角质素)(硫酸角质素)肌腱肌腱抗张强度大抗张强度大I型胶原蛋白型胶原蛋白硫酸皮肤素硫酸皮肤素弹性(延性)小弹性(延性)小硫酸软骨素硫酸软骨素大血管大血管延性强延性强弹性蛋白弹性蛋白硫酸软骨素硫酸软骨素抗裂性强抗裂性强IIIIII型和型和I I型胶原蛋白型胶原蛋白透明质酸、硫酸皮肤素、透明质酸、硫酸皮肤素、乙酰硫酸肝素乙酰硫酸肝素关节液关节液润滑防震润滑防震II型胶原蛋白型胶原蛋白透明质酸透明质酸皮肤皮肤中度延性中度延性I型(型(8
43、0%)和)和III型胶原蛋白型胶原蛋白硫酸皮肤素硫酸皮肤素韧性韧性角蛋白角蛋白透明质酸透明质酸基底膜基底膜变形性、分割变形性、分割VI型和型和V型蛋胶原蛋白、昆布型蛋胶原蛋白、昆布硫酸乙酰肝素(?)硫酸乙酰肝素(?)选择性透性选择性透性氨酸粘连蛋白氨酸粘连蛋白角膜角膜透明、坚固透明、坚固I型与型与II型胶原蛋白型胶原蛋白硫酸角质素硫酸角质素(硫酸)软骨素(硫酸)软骨素o糖胺聚糖由重复的二糖单位组成。其中之一糖胺聚糖由重复的二糖单位组成。其中之一是是葡萄糖胺或者半乳糖胺的衍生物葡萄糖胺或者半乳糖胺的衍生物。另一个。另一个常常是常常是糖醛酸糖醛酸。o糖残基上的糖残基上的-OH -OH 常常发生硫酸
44、酯化,使糖胺常常发生硫酸酯化,使糖胺聚糖带上高度负电荷。这对糖胺聚糖的生理聚糖带上高度负电荷。这对糖胺聚糖的生理功能有重要意义,分子中的羧基及硫酸等与功能有重要意义,分子中的羧基及硫酸等与蛋白等大分子结合。蛋白等大分子结合。硫酸软骨素硫酸软骨素( Chondroitin Sulfate ),硫酸角质硫酸角质素素( Keratan Sulfate ),),肝素肝素( Heparin ) 是是细胞间质中常见的糖胺聚糖,一般与蛋白质细胞间质中常见的糖胺聚糖,一般与蛋白质共价连接形成共价连接形成蛋白聚糖(蛋白聚糖(proteoglycans)。)。透明质酸透明质酸 ( Hyaluronate )是一种
45、不被硫酸化)是一种不被硫酸化的糖胺聚糖,也不与蛋白质共价连接的糖胺聚糖,也不与蛋白质共价连接(但是可但是可以非共价结合,如蛋白聚糖以非共价结合,如蛋白聚糖),而是游离存在。,而是游离存在。1)、透明质酸(hyaluronicacid)o高高等等动动物物组组织织中中发发现现,细细菌菌中中也也有有存存在在,主主要要存存在在于于结结缔缔组组织织如如眼眼球球玻玻璃璃体体、鸡鸡冠冠、脐脐带带、软软骨骨等等组组织。织。o主主要要功功能能是是在在组组织织中中吸吸水水,有有润润滑滑剂剂作作用用,对对组组织织起起保护保护作用。作用。o结构最简单的一种,由重复的二糖结构单位,结构最简单的一种,由重复的二糖结构单位
46、, D-D-葡萄糖葡萄糖醛酸(醛酸(D-GlcUAD-GlcUA与)与)N-N-乙酰葡萄糖胺(乙酰葡萄糖胺(GlcNAcGlcNAc)以)以 -1 -1,3 3糖苷键糖苷键相连相连o二糖单位间以二糖单位间以-1,4-1,4糖苷键糖苷键连接,分子链状、无分支,分连接,分子链状、无分支,分子量很大,可达子量很大,可达10001000万以上。万以上。2)、硫酸软骨素( Chondroitin Sulfate )o软骨的主要成分,广泛存在于结缔组织、软骨的主要成分,广泛存在于结缔组织、筋腱、皮肤等。筋腱、皮肤等。o分子量一般低于分子量一般低于1010万(约万(约250250个重复二个重复二糖),个别可
47、超过糖),个别可超过3030万。万。o有有4- 4-硫酸软骨素(硫酸软骨素硫酸软骨素(硫酸软骨素A A)和)和6- 6-硫硫酸软骨素(硫酸软骨素酸软骨素(硫酸软骨素C C)两种。)两种。软骨素(Chondroitin)o在结构上软骨素与透明质酸相似, 不同在于它含有N-乙酰-D氨基半乳糖,而不是N-乙酰氨基葡萄糖,它是细胞外膜的一个组成成分.D-葡萄糖醛酸葡萄糖醛酸N-乙酰半乳糖乙酰半乳糖胺胺硫酸软骨素的结构o有有4- 4-硫酸软骨素硫酸软骨素(硫酸软骨素(硫酸软骨素A A)和)和6- 6-硫酸软骨硫酸软骨素素(硫酸软骨素(硫酸软骨素C C)两种,二糖单位为)两种,二糖单位为D-D-葡萄葡萄糖
48、醛酸糖醛酸GlcUAGlcUA与与-1,3-N-1,3-N-乙酰半乳糖胺乙酰半乳糖胺GalNAcGalNAc以以 -1 -1,3 3相连,糖链生成后由专一性酶在相连,糖链生成后由专一性酶在4 4位或位或6 6位进行硫酸化。位进行硫酸化。硫酸软骨素的主要生理功能及其应用o与形态的维持、抵御病菌和毒素,以及皮肤与形态的维持、抵御病菌和毒素,以及皮肤创伤的愈合有关。创伤的愈合有关。o作为保健食品或保健药品长期应用于防治冠心病、作为保健食品或保健药品长期应用于防治冠心病、心绞痛、心肌梗塞、冠状动脉机机能不全、心肌缺心绞痛、心肌梗塞、冠状动脉机机能不全、心肌缺血等疾病。血等疾病。o硫酸软骨素还应用于滴眼
49、剂、化妆品以及外伤伤口硫酸软骨素还应用于滴眼剂、化妆品以及外伤伤口的愈合剂等。的愈合剂等。3)、硫酸角质素( Keratan Sulfate )o它是粘多糖中唯一不含糖醛酸的多糖聚合物,它由-D-半乳糖和N-乙酰葡萄糖胺通过-1,4糖苷键为二糖单位的聚合体,二聚体又以-1,3连接.4)、肝素(肝素( Heparin ) o最早由肝脏和心脏中分离到,以肝脏中丰富,广泛最早由肝脏和心脏中分离到,以肝脏中丰富,广泛存在于哺乳动物组织和体液中。存在于哺乳动物组织和体液中。o结构复杂,由结构复杂,由L L艾杜糖醛酸艾杜糖醛酸L-IduUAL-IduUA (或者葡萄(或者葡萄糖醛酸糖醛酸D-GlcUAD-
50、GlcUA )和和葡萄糖胺葡萄糖胺组成二糖单位组成二糖单位,同同时时C C2 2上的上的-NH-NH2 2和和C C6 6上的上的-OH-OH可分别被硫酸酯化。可分别被硫酸酯化。常用作常用作抗凝剂抗凝剂,防止血,防止血栓形成,输血时添加肝栓形成,输血时添加肝素作抗凝剂。素作抗凝剂。3、微生物杂多糖 微生物杂多糖主要是构成微生物的细胞壁,以及分泌的一些胞外多糖.o肽聚糖(peptideglycan)o胞外多糖肽聚糖(peptideglycan)o肽聚糖是细菌细胞壁的刚性结构的多糖成分,基本构成单位为N-乙酰胞壁酸(NAG)和N-乙酰葡萄糖胺(NAM),以及一个四肽,NAG与NAM间相排列,1,4
51、糖苷键连接,在NAM的乳酸上连接一个四肽。胞外多糖o细菌的胞外多糖多数是杂多糖,也有的是同多糖。是细菌的荚膜和粘液多糖,可以分为酸性,中性和含氨基这三类。含糖醛酸的酸性多糖占多数。第五节、结合糖(Glycoconjugate)o糖蛋白(Glycoprotein)o蛋白聚糖(Proteoglycan)o肽聚糖(peptidoglycan)o糖脂(Glycolipid)o脂多糖脂多糖 (Lipopolysaccharides )o核苷核苷(Nucleotide)一、糖蛋白(Glycoprotein)o1、概念:又称之为糖基化蛋白质,是一类由寡糖类和蛋白质以共价键连接而成的结合蛋白。2、寡糖链的两种
52、连接类型:1)、O-连接:寡糖链共价连接在蛋白质的 Ser和Thr残基的羟基氧上。2 2)、)、N-N-连接:寡糖链共价连接在肽连接:寡糖链共价连接在肽链的链的AsnAsn残基的残基的酰胺氮酰胺氮上。识别上。识别序列:天冬酰氨序列子序列:天冬酰氨序列子Asn-X-Asn-X-Ser/ThrSer/Thr N- N-连接寡糖通常具有五糖核心,由连接寡糖通常具有五糖核心,由三个三个ManMan和两个和两个 GlcNAcGlcNAc组成。组成。3、糖蛋白的生物合成oN-连接的糖蛋白连接的糖蛋白的合的合成开始于内质网成开始于内质网(ER) ,在高尔基体,在高尔基体(Golgi)中完成。)中完成。 O-
53、连接的糖苷键修饰连接的糖苷键修饰仅仅在高尔基体中发仅仅在高尔基体中发生。生。 糖糖蛋蛋白白合合成成后后由由高高尔尔基基复复合合体体根根据据蛋蛋白白质质上上的的信信号号对对其其进进行行分分类类运运送送。4、糖蛋白中糖链的生物学功能1)糖蛋白携带某些蛋白质去向的信息(折叠、缔合、分泌、稳定性等)2)寡糖链在细胞识别、信号传递中起关键作用二、蛋白聚糖(Proteoglycan)o蛋白聚糖是由核心蛋白、糖胺聚糖和连接寡糖组成的大分子复合物。o蛋白聚糖在细胞间质中大量存在,为组织提供粘度、润滑和弹性;在介导细胞粘附中也起到重要作用。蛋白聚糖中的糖肽键oO-糖肽键:D-木糖与Ser羟基之间形成的;oO-糖
54、肽键:N-乙酰半乳糖胺与Thr或Ser羟基之间形成。oN-糖肽键:N-乙酰葡萄糖胺与Asn之间形成的三、肽聚糖(peptidoglycan)o肽聚糖是是细菌细胞壁的主要成分,基本构成单位为N-乙酰胞壁酸(NAG)和N-乙酰葡萄糖胺(NAM),以及一个四肽,NAG与NAM相间排列,通过1,4糖苷键连接,在NAM的乳酸上连接一个四肽糖类部分内容提要:o1、单糖单糖的结构(主要单糖的投影式,简写),构型(DL构型)及其相关概念(旋光异构,差向异构,异头体等),构象,性质o2、寡糖寡糖,重点几个二糖结构(麦芽糖,蔗糖,乳糖)。o3、多糖多糖,重点是同多糖(淀粉,肝糖原,纤维素,几丁质)糖苷键的类型,高
55、级结构,了解杂多糖。o4、结合糖结合糖,了解(糖蛋白,蛋白聚糖,糖肽)。The endThe end!附加材料o多糖的研发多糖的研发oo中药多糖中药多糖中药多糖中药多糖研究非常热门,报道有研究非常热门,报道有100100多种具多种具免疫调免疫调节、抗肿瘤、抗病毒、抗感染、降血糖节、抗肿瘤、抗病毒、抗感染、降血糖等多种生理等多种生理活性的中药多糖,用于活性的中药多糖,用于肿瘤、肝炎、心血管等疾病肿瘤、肝炎、心血管等疾病的辅助治疗和康复的辅助治疗和康复。多糖最重要的药理作用是。多糖最重要的药理作用是免疫免疫免疫免疫促进作用促进作用促进作用促进作用,功能确切多糖的原生药大多属于,功能确切多糖的原生药
56、大多属于补益补益类类中药,如人参和黄芪多糖的原生药人参与黄芪是知中药,如人参和黄芪多糖的原生药人参与黄芪是知名的名的补气补气中药;银耳和枸杞子均是中药;银耳和枸杞子均是滋阴滋阴中药,淫羊中药,淫羊霍和肉苁蓉多糖的原生药淫羊霍与肉苁蓉是最常用霍和肉苁蓉多糖的原生药淫羊霍与肉苁蓉是最常用的的壮阳壮阳药;当归及阿胶多糖的原生药当归与阿胶是药;当归及阿胶多糖的原生药当归与阿胶是最具传统的最具传统的补血补血中药等等。这些功效中药等等。这些功效都与免疫功能都与免疫功能有关有关。多糖的多糖的调节免疫功能调节免疫功能活性活性多糖广泛存在于动物细胞膜、植物和微生物的细胞壁多糖广泛存在于动物细胞膜、植物和微生物的
57、细胞壁中。已从自然界提取出了好几百种多糖。多糖具有中。已从自然界提取出了好几百种多糖。多糖具有许多生物活性:许多生物活性:调节免疫功能,调节免疫功能,细胞脂多糖是细胞脂多糖是淋淋淋淋巴细胞巴细胞巴细胞巴细胞增殖的专一刺激剂,而对细胞无作用增殖的专一刺激剂,而对细胞无作用; ;通通过补体刺激过补体刺激巨噬细胞巨噬细胞巨噬细胞巨噬细胞的作用;对的作用;对细胞因子细胞因子细胞因子细胞因子作用作用, , 香香菇多糖在体内和体外都能增加腹腔巨噬细胞产生菇多糖在体内和体外都能增加腹腔巨噬细胞产生IL-1IL-1IL-1IL-1,这种作用可能是香菇多糖直接作用或通过,这种作用可能是香菇多糖直接作用或通过IL
58、-3IL-3间接作用机理来实现的。香菇多糖对其它免疫间接作用机理来实现的。香菇多糖对其它免疫功能的调节作用与它促进功能的调节作用与它促进IL-1IL-1的合成和分泌有密切的合成和分泌有密切的关系。的关系。多糖的多糖的抗肿瘤抗肿瘤活性活性o从细菌、真菌、酵母、地衣和高等植物中提取的多从细菌、真菌、酵母、地衣和高等植物中提取的多糖具有糖具有抗肿瘤活性抗肿瘤活性。其中香菇多糖,裂裥多糖,茯。其中香菇多糖,裂裥多糖,茯苓多糖和云芝糖肽等已进入苓多糖和云芝糖肽等已进入临床应用临床应用。某些多糖还。某些多糖还能能对抗化学剂的致癌作用对抗化学剂的致癌作用对抗化学剂的致癌作用对抗化学剂的致癌作用。多糖作为抗癌
59、剂的最大。多糖作为抗癌剂的最大优点是优点是毒副作用少,与化疗联合应用有协同作用毒副作用少,与化疗联合应用有协同作用,还可对抗化疗药的骨髓抑制等不良反应。有人认为还可对抗化疗药的骨髓抑制等不良反应。有人认为多糖应用于肿瘤治疗将是一个新的迷人的领域多糖应用于肿瘤治疗将是一个新的迷人的领域。实。实验证明大多数多糖的抗肿瘤作用机理验证明大多数多糖的抗肿瘤作用机理不是通过直接不是通过直接的杀细胞或抑细胞作用的杀细胞或抑细胞作用,而是通过,而是通过增强宿主的免疫增强宿主的免疫防御系统防御系统来发挥作用。来发挥作用。多糖的多糖的抗感染抗感染活性活性o一些多糖通过一些多糖通过增强宿主免疫机制抵抗细菌、增强宿主
60、免疫机制抵抗细菌、病毒和寄生虫的侵袭病毒和寄生虫的侵袭。香菇多糖可用于。香菇多糖可用于治疗治疗结核杆菌感染结核杆菌感染、对、对泡状口角炎病毒泡状口角炎病毒感染引起感染引起的小鼠脑炎有显著治疗和预防作用、对的小鼠脑炎有显著治疗和预防作用、对阿伯阿伯尔氏病毒和十二型腺病毒尔氏病毒和十二型腺病毒感染也有效,其抗感染也有效,其抗病毒作用与它病毒作用与它诱生诱生IFNIFN和提高和提高NKNK细胞活性细胞活性有有关、在小鼠实验性关、在小鼠实验性寄生虫寄生虫模型中,香菇多糖模型中,香菇多糖通过促进宿主形成肉芽肿杀伤曼森氏线虫卵。通过促进宿主形成肉芽肿杀伤曼森氏线虫卵。多糖的多糖的抗凝血抗凝血活性活性o自自
61、19161916年从肝脏提得年从肝脏提得肝素肝素并用作抗凝血剂以并用作抗凝血剂以来,又发现了来,又发现了藻酸藻酸(alginicacid)、)、昆布昆布多糖多糖、海带多糖海带多糖等有抗凝血作用。肝素是一等有抗凝血作用。肝素是一种应用已久的天然抗凝血剂,通过种应用已久的天然抗凝血剂,通过抑制凝血抑制凝血蛋白酶原转变为凝血酶蛋白酶原转变为凝血酶起作用。昆布多糖从起作用。昆布多糖从褐藻掌状昆布(褐藻掌状昆布(laminariadigtatalaminariadigtata)提得)提得, ,该多糖的磺酸化衍生物有肝素样作用。藻酸该多糖的磺酸化衍生物有肝素样作用。藻酸是由是由1,4-1,4-聚聚- -
62、-D-D-甘露甘露 糖醛酸和糖醛酸和- -古洛糖古洛糖组成的线状聚合物。具有强的类似肝素的阻组成的线状聚合物。具有强的类似肝素的阻凝作用。凝作用。多糖的多糖的降血糖降血糖活性活性甘蔗茎中的多糖甘蔗茎中的多糖- -汁液汁液 非蔗糖部分非蔗糖部分 能能降低降低小鼠血糖小鼠血糖水平。人参多糖对正常及四氧嘧啶水平。人参多糖对正常及四氧嘧啶糖尿病小鼠均有显著的降血糖作用,由糖尿病小鼠均有显著的降血糖作用,由 -1-1,6 6连接的连接的D-D-吡喃葡萄糖单位(吡喃葡萄糖单位(C C3 3位置上有位置上有一个一个 -D-D-吡喃葡萄糖分支)的多糖有显著吡喃葡萄糖分支)的多糖有显著的降血糖作用;通过的降血糖
63、作用;通过促进糖分解代谢酶活性促进糖分解代谢酶活性和抑制糖元合成酶活性起作用和抑制糖元合成酶活性起作用。多糖的多糖的降血脂降血脂活性活性o类肝素类肝素能促进能促进脂蛋白脂肪酶脂蛋白脂肪酶的释放的释放 ,使血液中的,使血液中的脂质分解成小分子,对因血脂过多引起的血清混浊脂质分解成小分子,对因血脂过多引起的血清混浊有澄清作用,也能有澄清作用,也能明显降低血胆固醇明显降低血胆固醇;硫酸软骨素硫酸软骨素能增强脂蛋白脂肪酶的活性,使乳麋微粒中甘油能增强脂蛋白脂肪酶的活性,使乳麋微粒中甘油三酯分解,从而使血清澄清;三酯分解,从而使血清澄清;果胶果胶是由是由- -半乳糖半乳糖醛酸以糖苷键连接而成,可使血胆固
64、醇降低;醛酸以糖苷键连接而成,可使血胆固醇降低;茶叶茶叶多糖多糖增强了卵磷脂胆固醇酰基转移酶活性,有利于增强了卵磷脂胆固醇酰基转移酶活性,有利于胆固醇的清除;胆固醇的清除;波叶大黄多糖波叶大黄多糖可抑制胰脂肪酶,从可抑制胰脂肪酶,从而降低脂类物质的消化吸收,促进核酸与蛋白质的而降低脂类物质的消化吸收,促进核酸与蛋白质的生物合成;从生物合成;从黑木耳、银耳和银耳孢子提得的三种黑木耳、银耳和银耳孢子提得的三种多糖多糖,对肝病恢复,骨髓造血均有促进作用。,对肝病恢复,骨髓造血均有促进作用。糖生物学糖生物学o生命科学中的新前沿生命科学中的新前沿糖类和血型糖类和血型血型在血型在输血、组织和器官的移植以及
65、法输血、组织和器官的移植以及法医鉴定医鉴定中非常重要。人类的主要血型是中非常重要。人类的主要血型是ABOABO型。这种血型是型。这种血型是19001900年年LandsteinerLandsteiner发现的。发现的。对第一次世界大战期间伤员抢救作出了重大对第一次世界大战期间伤员抢救作出了重大贡献。贡献。LandsteinerLandsteiner获得获得19301930年诺贝尔生理年诺贝尔生理和医学奖。经过许多免疫学家包括和医学奖。经过许多免疫学家包括LandsteinerLandsteiner和和WatkinsWatkins等半个多世纪的研究,等半个多世纪的研究,19601960年年Wit
66、kinsWitkins确定了确定了ABO(H)ABO(H)的抗原决定簇的抗原决定簇是糖类,并测定了有关糖类的结构。是糖类,并测定了有关糖类的结构。糖糖链链与与血血型型糖基的变化对血型抗原的影响糖基的变化对血型抗原的影响H H抗原抗原的前体是糖脂或糖蛋白质中糖链非还原的前体是糖脂或糖蛋白质中糖链非还原末端的二糖末端的二糖(Gal-N-GlcNAc)(Gal-N-GlcNAc)。由于这两个糖基的。由于这两个糖基的连接方式不同,又有连接方式不同,又有1 1型和型和2 2型之分:型之分:1313连接而连接而成的成的N-N-乙酰半乳糖是乙酰半乳糖是1 1型的基础;型的基础;1414连接而成连接而成的的N
67、-N-乙酰半乳糖则衍生出乙酰半乳糖则衍生出2 2型血型物质。在这两个型血型物质。在这两个二糖外侧的半乳糖上再连接有二糖外侧的半乳糖上再连接有1212岩藻糖岩藻糖(Fuc)(Fuc),就产生了,就产生了H1H1和和H2H2抗原。在抗原。在H H抗原上进一步接上抗原上进一步接上 N-N-GalNAcGalNAc或或GalGal之后,则之后,则H H抗原就转变成为抗原就转变成为A A抗原或抗原或B B抗抗原,有原,有1 1型和型和2 2型之分。仅一个糖基的差异就改变了型之分。仅一个糖基的差异就改变了血型。血型。糖链与细胞表面的特征糖链与细胞表面的特征 细胞外表面覆盖着一层糖链细胞外表面覆盖着一层糖链
68、-糖被糖被。糖蛋白。糖蛋白上多分支上多分支N-N-糖链糖链( (分支数可为分支数可为2-5)2-5)象粗大的树枝,象粗大的树枝,O-O-糖链糖链象细小的树枝;膜糖蛋白的胞外肽链如树象细小的树枝;膜糖蛋白的胞外肽链如树干,穿越质膜的肽段和胞内肽段则是树根;糖脂干,穿越质膜的肽段和胞内肽段则是树根;糖脂的脂质插入脂双层的外层,其糖链犹如小草。在的脂质插入脂双层的外层,其糖链犹如小草。在细胞表面还包裹着一层作为细胞间质组分的蛋白细胞表面还包裹着一层作为细胞间质组分的蛋白聚糖,一些蛋白聚糖也能整合到质膜中聚糖,一些蛋白聚糖也能整合到质膜中, ,统称为糖统称为糖复合物。它们宛如天线,在复合物。它们宛如天
69、线,在细胞间传递信息细胞间传递信息,参,参与与细胞间的粘附细胞间的粘附,或作为细菌、病毒等病原体的或作为细菌、病毒等病原体的受体,或是作为激素等信息分子的受体受体,或是作为激素等信息分子的受体起着积极起着积极的生物学作用。的生物学作用。糖链与疾病糖复合物表面糖复合物表面糖链结构的改变与很多疾病的发生相糖链结构的改变与很多疾病的发生相糖链结构的改变与很多疾病的发生相糖链结构的改变与很多疾病的发生相伴随伴随伴随伴随。糖链作为自身抗原的疾病有:自身免疫性。糖链作为自身抗原的疾病有:自身免疫性甲状腺炎甲状腺炎、红斑狼疮红斑狼疮等,有人认为等,有人认为糖尿病也与此有关糖尿病也与此有关。 IgGIgG糖链
70、与糖链与类类风湿病风湿病的关系研究得较为透彻。的关系研究得较为透彻。IgGIgG的糖含量略大于的糖含量略大于3%3%,糖,糖链的功能却鲜为人知。链的功能却鲜为人知。19811981年,年,DeisenhoferDeisenhofer用用X-X-射线晶体射线晶体衍射分析确定了糖基化位点以及糖链的结构是二天线的复衍射分析确定了糖基化位点以及糖链的结构是二天线的复杂型杂型N-N-N-N-糖链糖链糖链糖链。19851985年,木幡阳发现类风湿病人年,木幡阳发现类风湿病人IgGIgG糖链中的糖链中的GalGal低于正常人,提出了低于正常人,提出了“糖病理学糖病理学”的学科新分支的学科新分支 糖链糖链失常
71、与疾病关系失常与疾病关系 。他和。他和DwekDwek合作确证了这种缺乏合作确证了这种缺乏GalGal的的IgGIgG发生了构象变化,被自身作为异物而产生了相应抗体,发生了构象变化,被自身作为异物而产生了相应抗体,在血管和关节等部位出现了免疫复合物的沉积,从而引发在血管和关节等部位出现了免疫复合物的沉积,从而引发类风湿疾病的发生。类风湿疾病的发生。糖链和生命现象糖链和生命现象 19851985年,年,Feizi等提出了等提出了“糖分化抗原糖分化抗原”的概的概念,发育过程中念,发育过程中细胞糖蛋白和糖脂所携带的糖类抗细胞糖蛋白和糖脂所携带的糖类抗原的改变是通过有序地逐个增加或减少糖残基而完原的改
72、变是通过有序地逐个增加或减少糖残基而完成的成的。人类大约有。人类大约有40-5040-50亿个细胞,组成了许多细胞亿个细胞,组成了许多细胞集团,每个集团的细胞以不同的方式相互粘附,细集团,每个集团的细胞以不同的方式相互粘附,细胞和基质之间也存在着相互识别和相互作用,集团胞和基质之间也存在着相互识别和相互作用,集团之间又相互识别、相互作用和相互制约,之间又相互识别、相互作用和相互制约,调节和控调节和控制着高等生物沿着固有的空间轴和时间轴井然有序制着高等生物沿着固有的空间轴和时间轴井然有序地发展地发展。在如此复杂的发展过程中所需的极其巨大。在如此复杂的发展过程中所需的极其巨大的的“生物信息生物信息
73、”只能由所含信息量比核酸和蛋白质只能由所含信息量比核酸和蛋白质大几个数量级的糖链分子来承担。导致了大几个数量级的糖链分子来承担。导致了“糖生物糖生物学学”的诞生。的诞生。糖生物学的崛起糖生物学的崛起糖生物学糖生物学( (glycobiology) )在在 19881988年被正式提出年被正式提出,牛津大学,牛津大学DwekDwek教授在教授在当年的当年的Annual Review of Annual Review of BiochemistryBiochemistry中撰写了以中撰写了以“糖生物糖生物学学”为题的综述,标志了糖生物学这为题的综述,标志了糖生物学这一新的分支学科的诞生。同一年牛津
74、一新的分支学科的诞生。同一年牛津大学研制成功了大学研制成功了N-N-糖链的结构分析仪糖链的结构分析仪,并实现了产品的商品化。并实现了产品的商品化。糖生物学糖生物学-生命科学的前沿生命科学的前沿19901990年,有年,有3 3家实验室几乎同时发现家实验室几乎同时发现血管内皮细胞血管内皮细胞- -白白血球粘附分子血球粘附分子1(ELAM-1)1(ELAM-1),后来改名为,后来改名为E-E-选凝素选凝素(E-(E-selectin)selectin),能识别白血球表面的四糖,能识别白血球表面的四糖Sia-LeSia-LeX X。当组织受到。当组织受到损伤时,白血球和内皮细胞粘附,沿壁滚动而穿过血
75、管壁,损伤时,白血球和内皮细胞粘附,沿壁滚动而穿过血管壁,进入受损组织杀灭入侵的异物。后来又发现了进入受损组织杀灭入侵的异物。后来又发现了P-P-选凝素选凝素和和L-L-选凝素选凝素,首次阐明了,首次阐明了炎症过程有糖类参与炎症过程有糖类参与。在肺癌和大。在肺癌和大肠癌细胞的表面也发现了肠癌细胞的表面也发现了Sia-LeSia-LeX X,癌细胞可能借助类似的,癌细胞可能借助类似的机制穿过血管而导致肿瘤的转移。掀起了开发和生产机制穿过血管而导致肿瘤的转移。掀起了开发和生产抗炎抗炎和抗肿瘤药物和抗肿瘤药物的热潮。以糖命名的药厂应运而生,美国的热潮。以糖命名的药厂应运而生,美国ScrippsScr
76、ipps研究所的华裔科学家王启辉首先应用研究所的华裔科学家王启辉首先应用3 3种不同的糖种不同的糖基转移酶,酶促合成了基转移酶,酶促合成了Sia-LeSia-LeX X。糖工程学糖工程学随着随着“糖生物学糖生物学”基础研究基础研究的发展,用于糖生物学研究的的发展,用于糖生物学研究的方方法和基本技术法和基本技术、以及把、以及把基础研究基础研究所得的成果进一步转化为生产技所得的成果进一步转化为生产技术术等方面的研究也倍受重视,等方面的研究也倍受重视,“糖工程学糖工程学”的兴起也是极为自的兴起也是极为自然的了。然的了。政府对糖生物学研究的支持政府对糖生物学研究的支持I I19891989年年日本日本
77、创刊了创刊了糖科学与糖工程动态糖科学与糖工程动态杂志杂志,1991,1991年由科学技术厅、厚生省、农林水产省年由科学技术厅、厚生省、农林水产省和通商产业省联合实施和通商产业省联合实施“糖工程前沿计划糖工程前沿计划”,总,总投资投资百亿日元百亿日元。该计划包括:糖工程、糖生物学、。该计划包括:糖工程、糖生物学、糖分子生物学、糖细胞生物学。编辑出版了专著糖分子生物学、糖细胞生物学。编辑出版了专著糖工程学糖工程学。美美能源部能源部19861986年资助佐治亚大学创建了复合年资助佐治亚大学创建了复合糖类糖类研究中心研究中心,建立复合糖类,建立复合糖类数据库数据库,19901990年底年底已收集了已收
78、集了60006000个糖结构数据,个糖结构数据,19921992年增加到年增加到92009200个,个,19921992年底有关的记录增加到年底有关的记录增加到2200022000份,份,19961996年年增加到增加到4200042000份。份。政府对糖生物学研究的支持政府对糖生物学研究的支持IIII欧盟欧盟1994-19981994-1998年的研究计划中有一项年的研究计划中有一项“欧洲糖类研欧洲糖类研究开发网络究开发网络”计划,强化欧洲在糖类基础研究以及将研究计划,强化欧洲在糖类基础研究以及将研究成果转化为商品方面与美国、日本的竞争能力。成果转化为商品方面与美国、日本的竞争能力。糖类作为
79、信息分子在糖类作为信息分子在受精、发生、发育、分化,神受精、发生、发育、分化,神经系统和免疫系统衡态的维持经系统和免疫系统衡态的维持等方面起着重要作用;等方面起着重要作用;炎症炎症和自身免疫疾病、老化、癌细胞的异常增殖和转移、病原和自身免疫疾病、老化、癌细胞的异常增殖和转移、病原体感染、植物和病原体相互作用、植物与根瘤菌共生等生体感染、植物和病原体相互作用、植物与根瘤菌共生等生理和病理过程理和病理过程都有糖类的介导。都有糖类的介导。2121世纪生命科学的研究焦世纪生命科学的研究焦点是对点是对多细胞生物的高层次生命现象多细胞生物的高层次生命现象的解释,因此,对生的解释,因此,对生物体内细胞识别和
80、调控过程的信息分子物体内细胞识别和调控过程的信息分子糖类的研究是糖类的研究是必不可缺的,各国都在加大投资以获得各自应有的地位。必不可缺的,各国都在加大投资以获得各自应有的地位。糖类与遗传学糖类与遗传学糖类是遗传学上非常重要的物质之一,过去人们并糖类是遗传学上非常重要的物质之一,过去人们并没有给予足够的评价。如没有给予足够的评价。如DNADNA与与RNARNA的区别的区别既不在碱基、也既不在碱基、也不在磷酸,不在磷酸,唯一的差别在核糖(唯一的差别在核糖(RNARNA)和脱氧核糖()和脱氧核糖(DNADNA)上上:RNARNA的核糖上位有羟基,的核糖上位有羟基,DNADNA的糖上位无羟基。核的糖上
81、位无羟基。核糖的位羟基对于糖的位羟基对于RNARNA来说,不仅是折叠成固有三维结构的来说,不仅是折叠成固有三维结构的关键因素,也是关键因素,也是RNARNA具有催化作用的重要组成部分。具有催化作用的重要组成部分。核糖位羟基是核糖位羟基是DNADNA和和RNARNA在遗传学上的本质差别,在遗传学上的本质差别,由此可见糖类在遗传学上由此可见糖类在遗传学上扮演着核心和关键角色扮演着核心和关键角色。根据糖。根据糖类在生命过程中所扮演的重要角色,类在生命过程中所扮演的重要角色,糖类应该有自己的遗糖类应该有自己的遗传密码传密码。 糖类遗传密码糖类遗传密码生命信息的准确传递是维持正常生命过程的基础生命信息的
82、准确传递是维持正常生命过程的基础,而,而三维结构的准确遗传、正常代谢和准确表达则是信息准确三维结构的准确遗传、正常代谢和准确表达则是信息准确传递的物质结构基础传递的物质结构基础。作为。作为“天才绝妙信息箱天才绝妙信息箱”的糖类,的糖类,其物质结构基础是如何由双亲传给子代的?在后天的细胞其物质结构基础是如何由双亲传给子代的?在后天的细胞新陈代谢中这种结构基础又是如何正常代谢和准确表达的新陈代谢中这种结构基础又是如何正常代谢和准确表达的?这个问题的答案就是?这个问题的答案就是糖类遗传密码糖类遗传密码(糖码)。与蛋白质(糖码)。与蛋白质遗传密码类似,遗传密码类似,生物体内也可能存在糖类遗传密码生物体
83、内也可能存在糖类遗传密码。虽然,。虽然,当代大多数科学家都认为是糖基化酶编码了糖类,但是,当代大多数科学家都认为是糖基化酶编码了糖类,但是,也有一些人注意到了糖类本身的编码功能、对基因的反调也有一些人注意到了糖类本身的编码功能、对基因的反调控作用、糖类一维结构的多样性和三维结构的有限性等现控作用、糖类一维结构的多样性和三维结构的有限性等现象。象。 糖类遗传密码是什么?糖类遗传密码是什么?生命进化过程:低等植物生命进化过程:低等植物高等植物(糖类为主体)高等植物(糖类为主体),低等动物,低等动物 高等动物(蛋白质为主体)。高等动物(蛋白质为主体)。糖类与蛋白质糖类与蛋白质一样可能也有自己的遗传密
84、码一样可能也有自己的遗传密码,虽然二者可能有一定的内,虽然二者可能有一定的内在联系,但是也必定存在明显差别。在联系,但是也必定存在明显差别。糖类遗传密码可能与糖类遗传密码可能与糖类本身有密切关系糖类本身有密切关系(包括糖甙、糖苷衍生物)。也许先(包括糖甙、糖苷衍生物)。也许先有糖类遗传,然后才有蛋白质遗传。糖类是自然界最容易有糖类遗传,然后才有蛋白质遗传。糖类是自然界最容易生成的有机分子,生成的有机分子,COCO2 2H H2 2O O在大海的盐场催化下,阳光为能在大海的盐场催化下,阳光为能源,可以形成甲醛,这是第一个最简单的最小的碳水化合源,可以形成甲醛,这是第一个最简单的最小的碳水化合物。
85、从第一个简单的有机分子到复杂、高级的生命有机分物。从第一个简单的有机分子到复杂、高级的生命有机分子,必然存在一条通路。虽然关于生命起源的偶然学说是子,必然存在一条通路。虽然关于生命起源的偶然学说是最省力气的解释,但偶然中存在着必然,这条通路有待人最省力气的解释,但偶然中存在着必然,这条通路有待人们去发现。们去发现。 糖类遗传密码与糖类遗传密码与IIII型糖尿病型糖尿病IIII型糖尿病的主要病因可能是型糖尿病的主要病因可能是糖类遗传密码出了毛糖类遗传密码出了毛病病?如果从糖类遗传密码假说角度研究?如果从糖类遗传密码假说角度研究IIII型糖尿病,有可型糖尿病,有可能获得能获得新结构类型的治疗药物新
86、结构类型的治疗药物。IIII型糖尿病的病因学研究型糖尿病的病因学研究可能有利于糖类遗传密码的破译,可能有利于糖类遗传密码的破译,“解铃还需系铃人解铃还需系铃人”。对出毛病的糖类遗传密码进行部分修复或弥补其不足,需对出毛病的糖类遗传密码进行部分修复或弥补其不足,需要对血糖具有要对血糖具有双向调节功能的药物双向调节功能的药物,而不是现在临床上所,而不是现在临床上所采用的单纯降低血糖药物。膳食不平衡、营养不良、营养采用的单纯降低血糖药物。膳食不平衡、营养不良、营养过剩,时间长了会过剩,时间长了会损伤调控糖类吸收和代谢的遗传系统损伤调控糖类吸收和代谢的遗传系统,可能是发生可能是发生IIII型糖尿病的根
87、本原因。型糖尿病的根本原因。 糖类遗传密码与其他疾病的关系糖类遗传密码与其他疾病的关系许多疾病的发生和治疗都与糖类密切相关许多疾病的发生和治疗都与糖类密切相关,如细菌和病毒的抗原部分早已为人们所认识,疫苗如细菌和病毒的抗原部分早已为人们所认识,疫苗的应用实际上是糖类的贡献。从糖码假说角度分析,的应用实际上是糖类的贡献。从糖码假说角度分析,癌症和病毒都可能是由于糖码畸变造成的恶果癌症和病毒都可能是由于糖码畸变造成的恶果。艾。艾滋病毒潜入人体细胞后,不能被防御体系识别,原滋病毒潜入人体细胞后,不能被防御体系识别,原因可能在其糖类部分。忽视糖类作用所得到的某些因可能在其糖类部分。忽视糖类作用所得到的
88、某些抗抗HIVHIV制剂制剂治标不治本治标不治本。中医对糖类药物非常重视,。中医对糖类药物非常重视,扶正固本的药物被列为上品,如人参、黄芪、灵芝、扶正固本的药物被列为上品,如人参、黄芪、灵芝、茯苓、地黄、枸杞子等等,其中的活性成分大多数茯苓、地黄、枸杞子等等,其中的活性成分大多数是皂甙、多糖或寡糖类,其实皂甙也是糖类衍生物。是皂甙、多糖或寡糖类,其实皂甙也是糖类衍生物。期待发现更多糖类受体和糖类酶期待发现更多糖类受体和糖类酶 韩国科学家发现,合成的糖类聚合物具有催化韩国科学家发现,合成的糖类聚合物具有催化RNA和和DNA的水解作用,四个聚合物含有呋喃核糖,一个聚合的水解作用,四个聚合物含有呋喃
89、核糖,一个聚合物含吡喃糖,既能催化对硝基苯基磷酸乙酯的水解,也物含吡喃糖,既能催化对硝基苯基磷酸乙酯的水解,也能能催化含有个碱基的单股催化含有个碱基的单股DNA水解水解。而一般情况下只有。而一般情况下只有核酸水解酶才能水解核酸水解酶才能水解DNA。该发现的新颖性得到国际同行。该发现的新颖性得到国际同行的高度重视和评价。英国生物化学家的高度重视和评价。英国生物化学家M.J. Gait评价说:评价说:很显然,很显然,糖类聚合物有效地水解磷酸二酯键是史无前例的糖类聚合物有效地水解磷酸二酯键是史无前例的发现发现。虽然国际同行们高度评价了课题组的新发现,。虽然国际同行们高度评价了课题组的新发现,但是都但
90、是都没有涉及到是否存在天然的含有糖类的受体或含有没有涉及到是否存在天然的含有糖类的受体或含有糖类的酶糖类的酶。糖类聚合物单体能够水解和的发。糖类聚合物单体能够水解和的发现,是现,是对糖码存在可能性的间接支持对糖码存在可能性的间接支持,它对生命科学理论,它对生命科学理论的影响将远远超过它本身的实用价值。的影响将远远超过它本身的实用价值。 糖类的遗传与变异糖类的遗传与变异遗传和变异遗传和变异是生命过程不可缺少的两个重要是生命过程不可缺少的两个重要方面,二者都有方面,二者都有两重性两重性。遗传遗传保持了种、属的相对保持了种、属的相对稳定性,但不能产生新种,难以适应变化大的环境,稳定性,但不能产生新种
91、,难以适应变化大的环境,不变异就会退化或在环境大变化中消亡。不变异就会退化或在环境大变化中消亡。变异变异既可既可以发展优势、产生新种、适应不断变化的环境,也以发展优势、产生新种、适应不断变化的环境,也可能畸变到病态,使个体消亡。可能畸变到病态,使个体消亡。糖类具有糖类具有结构多样性和易于异构化结构多样性和易于异构化,其,其保守保守性不及核酸和蛋白质性不及核酸和蛋白质,变异性可能会超过核酸和蛋变异性可能会超过核酸和蛋白质白质 。糖原组学将成为生物学研究热点糖原组学将成为生物学研究热点在基因组学在基因组学(Genomics)(Genomics)和蛋白质组学和蛋白质组学(Proteomics)(Pr
92、oteomics)相继成为生物学的重点研究领域后,糖原组学相继成为生物学的重点研究领域后,糖原组学(Glycomics)(Glycomics)有望取得突破性进展。有望取得突破性进展。 糖原组学是糖原组学是研究糖和碳水化合物研究糖和碳水化合物研究糖和碳水化合物研究糖和碳水化合物的的, ,糖结构的微小差糖结构的微小差异可能对生物功能有重大影响。糖涉及到从胚胎发育到免异可能对生物功能有重大影响。糖涉及到从胚胎发育到免疫系统控制的每一件事情。在所有器官中,糖无所不在。疫系统控制的每一件事情。在所有器官中,糖无所不在。对糖生物学的深入研究可能会产生新药,或改进现有药物对糖生物学的深入研究可能会产生新药,
93、或改进现有药物的疗效。例如,加有适量糖的、基于蛋白质的药物,可能的疗效。例如,加有适量糖的、基于蛋白质的药物,可能产生更有效的治疗,以及减少所需药物剂量。产生更有效的治疗,以及减少所需药物剂量。 糖原生物学糖原生物学糖生物学或称糖原生物学由于缺乏研究的有效工具,糖生物学或称糖原生物学由于缺乏研究的有效工具,以及糖分子本身的复杂性,落后于基因和蛋白质的研究。以及糖分子本身的复杂性,落后于基因和蛋白质的研究。DNADNA和蛋白质是直线序列,糖有分叉序列和蛋白质是直线序列,糖有分叉序列;DNA;DNA仅有仅有4 4种基本种基本单元,蛋白质有单元,蛋白质有2020种,而糖有种,而糖有3030种以上。麻
94、省理工学院的种以上。麻省理工学院的萨西赛克哈兰说:萨西赛克哈兰说:“目前我们尚未破译其密码,我们仅处目前我们尚未破译其密码,我们仅处于揭示糖奥秘的初始阶段于揭示糖奥秘的初始阶段”。他的实验室。他的实验室2 2年前才开发出第年前才开发出第一个糖排序方法。同校的化学家西伯格于今年一个糖排序方法。同校的化学家西伯格于今年2 2月演示了第月演示了第一个自动化的一个自动化的“糖合成仪糖合成仪”。了解糖的功能对医学的影响可能远超过改进药的剂了解糖的功能对医学的影响可能远超过改进药的剂量及战胜癌症。研究人员正研究糖是如何影响帕金森氏病、量及战胜癌症。研究人员正研究糖是如何影响帕金森氏病、早老性痴呆症和象爱滋病那样的传染病的发展早老性痴呆症和象爱滋病那样的传染病的发展。