冀教版八年级数学下册二十二章四边形22.7多边形的内角和与外角和课件10

上传人:枫** 文档编号:584525744 上传时间:2024-08-31 格式:PPT 页数:47 大小:4.73MB
返回 下载 相关 举报
冀教版八年级数学下册二十二章四边形22.7多边形的内角和与外角和课件10_第1页
第1页 / 共47页
冀教版八年级数学下册二十二章四边形22.7多边形的内角和与外角和课件10_第2页
第2页 / 共47页
冀教版八年级数学下册二十二章四边形22.7多边形的内角和与外角和课件10_第3页
第3页 / 共47页
冀教版八年级数学下册二十二章四边形22.7多边形的内角和与外角和课件10_第4页
第4页 / 共47页
冀教版八年级数学下册二十二章四边形22.7多边形的内角和与外角和课件10_第5页
第5页 / 共47页
点击查看更多>>
资源描述

《冀教版八年级数学下册二十二章四边形22.7多边形的内角和与外角和课件10》由会员分享,可在线阅读,更多相关《冀教版八年级数学下册二十二章四边形22.7多边形的内角和与外角和课件10(47页珍藏版)》请在金锄头文库上搜索。

1、第二十二章第二十二章 四边形四边形22.7 22.7 多边形的内角和多边形的内角和 与外角和与外角和1课堂讲解u多边形多边形u多边形的内角和多边形的内角和u多边形的外角和多边形的外角和u多边形内角和与外角和的关系多边形内角和与外角和的关系2课时流程逐点逐点导讲练导讲练课堂课堂小结小结作业作业提升提升 小明有一个设想:小明有一个设想: 2018年世界杯在俄罗斯举行,要是能设计一个内年世界杯在俄罗斯举行,要是能设计一个内角和是角和是2018的多边形花坛该多有意义啊!小明的这的多边形花坛该多有意义啊!小明的这个想法能实现吗?个想法能实现吗? 1知识点多边形多边形 如图,观察这些图形,它们都是平而上由

2、线段首如图,观察这些图形,它们都是平而上由线段首尾顺次相接所组成的尾顺次相接所组成的.知知1 1导导 平面上,由不在同一条直线上的线段首尾顺次相平面上,由不在同一条直线上的线段首尾顺次相接组成的图形,叫做接组成的图形,叫做多边形多边形 . 连接多边形不相邻两个顶点的线段叫做连接多边形不相邻两个顶点的线段叫做多边形的多边形的对角线对角线.多边形有几条边就叫做几边形多边形有几条边就叫做几边形.三边形就是我三边形就是我们通常所说的三角形们通常所说的三角形. 下图所示的五边形,我们把它记作五边形下图所示的五边形,我们把它记作五边形ABCDE.用类似的方法可以记其他多边形用类似的方法可以记其他多边形.多

3、边形的边、顶点、内角、外角多边形的边、顶点、内角、外角的意义和三角形相同的意义和三角形相同.知知1 1导导知知1 1讲讲例例1 下列说法中,正确的有下列说法中,正确的有()(1)三角形是边数最少的多边形;三角形是边数最少的多边形;(2)由由n条线段连接起来组成的图形叫多边形;条线段连接起来组成的图形叫多边形;(3)n边形有边形有n条边、条边、n个顶点、个顶点、2n个内角和外角;个内角和外角;(4)多边形分为凹多边形和凸多边形多边形分为凹多边形和凸多边形A1个个 B2个个C3个个 D4个个B知知1 1讲讲(2)的说法不严密,应点明三点:其一,的说法不严密,应点明三点:其一,“不在同不在同一条直线

4、上一条直线上”的线段;其二,是的线段;其二,是“平面图形平面图形”;其三,其三,“线段首尾顺次相接线段首尾顺次相接”;(3)n边形有边形有n个内角和个内角和2n个外角,即外角的个数是个外角,即外角的个数是内角个数的内角个数的2倍倍(1)(4)说法正确说法正确.导引:导引:总结(1)理解多边形的定义,要理解多边形的定义,要 从多边形的几个条件入手从多边形的几个条件入手.(2)一个一个n边形,它的顶点数、内角的个数都是边形,它的顶点数、内角的个数都是n个,个, 只有外只有外 角有角有2n个个知知1 1讲讲知知1 1练练下列图形中,不是多边形的是下列图形中,不是多边形的是()从六边形的一个顶点出发,

5、可以画出从六边形的一个顶点出发,可以画出m条对角线,条对角线,它们将六边形分成它们将六边形分成n个三角形,则个三角形,则m、n的值分别的值分别为为()A4、3 B3、3 C3、4 D4、41C2C知知1 1练练从一个从一个n边形的同一个顶点出发,分别连接这个边形的同一个顶点出发,分别连接这个顶点和与它不相邻的各顶点,若把这个多边形分顶点和与它不相邻的各顶点,若把这个多边形分割成割成6个三角形,则个三角形,则n的值是的值是()A6 B7 C8 D93C2知识点多边形的内角和多边形的内角和知知2 2导导 在纸上任意画一个四边形,剪下它的四个角,在纸上任意画一个四边形,剪下它的四个角,把它们拼在起把

6、它们拼在起(四个角的顶点里合四个角的顶点里合).你发现了什么?你发现了什么?其他同学与你的发现相同吗?你能把你的发现概括其他同学与你的发现相同吗?你能把你的发现概括成成 一个命题吗?你能证明这个一个命题吗?你能证明这个命题命题吗?吗?知知2 2导导四边形有以下的定理:四边形有以下的定理:四边形的内角和等于四边形的内角和等于360.已知:四边形已知:四边形ABCD.求证:求证: A+B+C+D=360.证明证明 如图,连接如图,连接BD.A+ABD+ADB=180, C+CBD+CDB=180.A+ABD+ADB+ C+CBD+CDB =180+180=360,即即A+ABC+C+CDA=360

7、.边数边数图形图形从某顶点出发从某顶点出发的对角线条数的对角线条数划分成的三划分成的三角形个数角形个数多边形的多边形的内角和内角和3011180412218056n知知2 2导导归纳 对于对于n边形,从某一个顶点出发的边形,从某一个顶点出发的(n- -3)条对角线条对角线把把n边形划分成边形划分成 (n- -2)个三角形,所以个三角形,所以n边形的内角和边形的内角和就等于这就等于这(n- -2)个三角形个三角形的所有内角之和的所有内角之和.于是就有下于是就有下面的定理:面的定理: n边形边形的的内角内角和为和为(n- -2)180(n3).知知2 2导导例例2 一个六边形如图一个六边形如图1.

8、已知已知ABDE,BCEF,CDAF.求求A+C+E的值的值.因为两条平行线被一条直线所因为两条平行线被一条直线所截截.有许多等角关系,所以我们有许多等角关系,所以我们不妨连结不妨连结AD试试看,如图试试看,如图2.不不难发现,难发现,1=3,2=4.由由此可得本题解法此可得本题解法.分析分析:图图1图图2知知2 2讲讲如图如图2,连结,连结AD.ABDE,CDAF(已知已知),1=3,2=4.1+2=3+4.即即FAB=CDE.同理,同理,B=E,C=F.FAB+B+C+CDE+E+F =(6- -2)180=720.FAB+C+E= 720=360.解解:图图2知知2 2讲讲总结知知2 2

9、讲讲 把多边形的内角和的问题转化为四边形内角和、把多边形的内角和的问题转化为四边形内角和、三角形内角和问题是常用的解题思路三角形内角和问题是常用的解题思路.1在在540,720,960中,哪个角度不可能是多边形中,哪个角度不可能是多边形的内角和?的内角和?2在四边形在四边形ABCD中,如果中,如果A+C+D=280,那,那么么B的度数是多少?的度数是多少?知知2 2练练解:解: 960不可能是多边形的内角和不可能是多边形的内角和解:解: B360(ACD) 36028080.3一个五边形有三个内角是直角,另两个内角都等一个五边形有三个内角是直角,另两个内角都等于于n.求求n的值的值.4过某个多

10、边形一个顶点的对角线有过某个多边形一个顶点的对角线有10条条.求这个多求这个多边形的内角和边形的内角和.知知2 2练练解:解:由题意可知由题意可知9032n(52)180. 解得解得n135.解:解:设这个多边形的边数为设这个多边形的边数为n,则,则n310, n13.内角和为内角和为(132)1801 980.知知2 2练练5 四边形的四个内角可以都是锐角吗,可以都是钝四边形的四个内角可以都是锐角吗,可以都是钝角吗?为什么?角吗?为什么?解:解:不可以四边形的内角和是不可以四边形的内角和是360,如果四边形,如果四边形的四个内角都是锐角,那么它的内角和小于的四个内角都是锐角,那么它的内角和小

11、于360;如果都是钝角,那么它的内角和大于;如果都是钝角,那么它的内角和大于360.知知2 2讲讲例例3 中考中考重庆重庆若一个多边形的内角和是若一个多边形的内角和是900,则这,则这个多边形是个多边形是()A五边形五边形B六边形六边形C七边形七边形 D八边形八边形设这个多边形的边数为设这个多边形的边数为n,由题意得,由题意得(n2)180900,解得:,解得:n7.导引导引:C总结知知2 2讲讲 已知多边形的内角和求边数已知多边形的内角和求边数n的方法:的方法:根据多边根据多边形内角和公式:形内角和公式:(n2)180内角和列方程,解内角和列方程,解方程求出方程求出n的值,即得多边形的边数的

12、值,即得多边形的边数1 一个多边形的内角和等于一个多边形的内角和等于1 080,这个多边形的边,这个多边形的边数是多少?数是多少?知知2 2练练解:解:设这个多边形的边数为设这个多边形的边数为n. 则则(n2)1801 080. 解得解得n8. 这个多边形的边数为这个多边形的边数为8.解:解: D 360144.2在四边形在四边形ABCD中,已知中,已知A:B:C:D= 1:2:3:4.求求D的度数的度数.知知2 2练练【中考中考北京北京】内角和为内角和为540的多边形是的多边形是()3C知知2 2练练【中考中考宜昌宜昌】如图,将一张四边形纸片沿直线如图,将一张四边形纸片沿直线剪开,如果剪开后

13、的两个图形的内角和相等,下剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是列四种剪法中,符合要求的是()A B C D4B知知2 2练练【中考中考益阳益阳】将一矩形纸片沿一条直线剪成两将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可个多边形,那么这两个多边形的内角和之和不可能是能是()A360 B540C720 D9005D知知2 2练练将一个将一个n边形变成边形变成(n1)边形,内角和将边形,内角和将()A减少减少180 B增加增加90C增加增加180 D增加增加360一个多边形除一个内角外其余内角的和为一个多边形除一个内角外其余内角的和为1 510

14、,则这个多边形对角线的条数是,则这个多边形对角线的条数是()A27 B35 C44 D546C7C知知2 2练练一个多边形截去一个角后,形成一个新多边形的一个多边形截去一个角后,形成一个新多边形的内角和是内角和是1 620,则原来多边形的边数是,则原来多边形的边数是()A10 B11 C12 D以上都有可能以上都有可能8D3知识点多边形的外角和多边形的外角和知知3 3导导 由于每一个外角与和它相邻的内角互补,所以由于每一个外角与和它相邻的内角互补,所以n边形的外角和边形的外角和(每一个顶点只取一个外角每一个顶点只取一个外角)为为n180- -(n- -2)180= 360. 任何多边形的外角和

15、为任何多边形的外角和为360.知知3 3讲讲定理:定理:多边形的外角和等于多边形的外角和等于360.要点精析要点精析(1)多边形的外角和与多边形的边数无关,它始终多边形的外角和与多边形的边数无关,它始终 为为360;(2)若若n边形的每个内角相等,则每一个外角的度数边形的每个内角相等,则每一个外角的度数 为为 (n3)知知3 3讲讲例例4 已知一个多边形的每个外角都等于已知一个多边形的每个外角都等于40,则这个,则这个多边形是多边形是()A五边形五边形B九边形九边形C七边形七边形D八边形八边形根据多边形外角和等于根据多边形外角和等于360,直接可求出多边,直接可求出多边形的边数形的边数.导引导

16、引:B总结知知3 3讲讲 用多边形外角和定理求多边形内用多边形外角和定理求多边形内(外外)角的度数或角的度数或求多边形的边数的方法:求多边形的边数的方法:一般可利用一般可利用方程思想方程思想通过通过列方程解决,本例根据边数列方程解决,本例根据边数 多边形每个外角的度多边形每个外角的度数数360,即可求出,即可求出1 如图所示的模板,规定:如图所示的模板,规定:AB,CD的延长线应相的延长线应相 交交成成80的角的角.因交点不在板上,不便测量,工人因交点不在板上,不便测量,工人 师傅师傅测得测得BAE=122,OCF=155.此时此时AB,CD的的延长线相交所成的角是否符合规定延长线相交所成的角

17、是否符合规定?为什么为什么?知知3 3练练不符合规定理由:因为五边形不符合规定理由:因为五边形AEFCG的内角和为的内角和为(52)180540.所以所以AGC540(EFBAEDCF)5404578380.所以不符合规定所以不符合规定解:解:知知3 3练练五边形的外角和等于五边形的外角和等于()A180 B360 C540 D720【中考中考十堰十堰】如图所示,小华从点如图所示,小华从点A出发,沿出发,沿直线前进直线前进10米后左转米后左转24,再沿直线前进,再沿直线前进10米,米,又向左转又向左转24照这样走下去,他第一次回到照这样走下去,他第一次回到出发地点出发地点A时,一共走的路程是时

18、,一共走的路程是()A140米米 B150米米C160米米 D240米米2B3B知知3 3练练【中考中考宜昌宜昌】设四边形的内角和等于设四边形的内角和等于a,五边形,五边形的外角和等于的外角和等于b,则,则a与与b的关系是的关系是()Aab Bab Cab Dba1804B4知识点多边形内角和与外角和的关系多边形内角和与外角和的关系知知4 4讲讲例例5 中考中考资阳资阳一个多边形的内角和是外角和的一个多边形的内角和是外角和的3倍,倍,则这个多边形的边数是则这个多边形的边数是_设这个多边形的边数为设这个多边形的边数为n,多边形的外角和为多边形的外角和为360,(n2)1803360.解得:解得:

19、n8.导引导引:8总结知知4 4讲讲 因为多边形的外角和是定值,所以有些多边形因为多边形的外角和是定值,所以有些多边形的问题经常转化为外角的问题来解决的问题经常转化为外角的问题来解决. 多边形的内角多边形的内角和、外角和在应用时注意区分,不要混了和、外角和在应用时注意区分,不要混了.1内角和等于外角和的内角和等于外角和的2倍的多边形是几边形?倍的多边形是几边形?2一个一个n边形的外角和与内角和的度数之比为边形的外角和与内角和的度数之比为2:7. 求求n的值的值.知知4 4练练解:解:设这个多边形的边数为设这个多边形的边数为n,则,则(n2)1802360.解得解得n6.所以这个多边形是六边形所

20、以这个多边形是六边形解:解:由题意可知由题意可知 , 所以所以n9.3 如图,在四边形如图,在四边形ABCD中,中,A=C=90,BE平平分分ABC,DF平分平分ADC. BE与与DF有怎样的位置有怎样的位置关系?为什么?关系?为什么?知知4 4练练知知4 4练练解:解:BEDF.理由:理由:AC90,ADCABC360(AC)180.BE,DF分别平分分别平分ABC,ADC,ABE ABC,ADF ADC.ABEADF ABC ADC 18090.又易知又易知ABEAEB90,AEBADF.BEDF.知知4 4练练【中考中考南通南通】已知一个多边形的内角和等于它已知一个多边形的内角和等于它的

21、外角和,则这个多边形的边数为的外角和,则这个多边形的边数为()A3 B4 C5 D6【中考中考临沂临沂】一个多边形的内角和是外角和的一个多边形的内角和是外角和的2倍,这个多边形是倍,这个多边形是()A四边形四边形 B五边形五边形 C六边形六边形 D八边形八边形4B5C知知4 4练练【中考中考莱芜莱芜】一个多边形的内角和比其外角一个多边形的内角和比其外角和的和的2倍多倍多180,则该多边形的对角线的条数,则该多边形的对角线的条数是是()A12 B13 C14 D156C定义:定义:平面上,由平面上,由不在同一条直线上不在同一条直线上的线段的线段首尾顺次首尾顺次相接组成的图形叫做多边形。相接组成的

22、图形叫做多边形。n边形的内角和为边形的内角和为(n- -2)180(n3).n边形一个顶点出发可引边形一个顶点出发可引(n- -3)条对角线条对角线.则则n个顶点的个顶点的n边形共有边形共有 条对角线条对角线.多边形的外角和等于多边形的外角和等于360.1知识小结已知多边形的一个外角与除该外角对应的内角外的其已知多边形的一个外角与除该外角对应的内角外的其余各内角的和为余各内角的和为600,求该外角的度数,求该外角的度数2易错小结易错小结解:解:设多边形的边数为设多边形的边数为n,这个外角的度数为,这个外角的度数为x,则与这个外角相邻的内角为则与这个外角相邻的内角为(180x).由题意,得由题意,得(n2)180x(180x)600,解得解得x57090n.0x180,057090n180,即,即4 n6 .又又n为整数,为整数,n5或或n6.当边数为当边数为5时,该外角为时,该外角为120; 当边数为当边数为6时,该外角为时,该外角为30.易错点:易错点:忽视角的度数的取值范围忽视角的度数的取值范围

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号