湘教版八年级上册数学课件:25全等三角形(共73张PPT)

上传人:人*** 文档编号:570149254 上传时间:2024-08-02 格式:PPT 页数:82 大小:6.04MB
返回 下载 相关 举报
湘教版八年级上册数学课件:25全等三角形(共73张PPT)_第1页
第1页 / 共82页
湘教版八年级上册数学课件:25全等三角形(共73张PPT)_第2页
第2页 / 共82页
湘教版八年级上册数学课件:25全等三角形(共73张PPT)_第3页
第3页 / 共82页
湘教版八年级上册数学课件:25全等三角形(共73张PPT)_第4页
第4页 / 共82页
湘教版八年级上册数学课件:25全等三角形(共73张PPT)_第5页
第5页 / 共82页
点击查看更多>>
资源描述

《湘教版八年级上册数学课件:25全等三角形(共73张PPT)》由会员分享,可在线阅读,更多相关《湘教版八年级上册数学课件:25全等三角形(共73张PPT)(82页珍藏版)》请在金锄头文库上搜索。

1、全等三角形全等三角形本课内容本节内容2.5 如图是两组形状、大小完全如图是两组形状、大小完全相同的图形相同的图形. 用透明纸描出每组中用透明纸描出每组中的一个图形,并剪下来与另一个图的一个图形,并剪下来与另一个图形放在一起,它们完全重合吗形放在一起,它们完全重合吗?做一做做一做(1)(2)(1)(2)我发现它们可以完全重合我发现它们可以完全重合结论结论 我们把能够完全重合我们把能够完全重合的两个图形叫作的两个图形叫作全等图形全等图形.动脑筋动脑筋如图,如图,ABC分别通过平移、旋转、轴反射分别通过平移、旋转、轴反射后得到后得到 ,问,问ABC与与 能完能完全重合吗全重合吗? 根据平移、旋转和轴

2、反射的性根据平移、旋转和轴反射的性质,可知分别通过上述三个变换后质,可知分别通过上述三个变换后得到的得到的 与与ABC都可以完都可以完全重合,因此它们是全等图形全重合,因此它们是全等图形.结论结论能完全重合的两个三能完全重合的两个三角形叫作角形叫作全等三角形全等三角形. 全等三角形中,互相重合的顶点全等三角形中,互相重合的顶点叫作叫作对应顶点对应顶点,互相重合的边叫作,互相重合的边叫作对对应边应边,互相重合的角叫作,互相重合的角叫作对应角对应角. AB B( (B) )CABCA( (A) )(C) )例如,图例如,图(1)中的中的ABC和和 全等,全等,其中其中A与与A,B与与B,C与与C是

3、是对对应顶点;应顶点;记作:记作: ABC .AB与与 ,BC与与 ,CA与与 是是对对应边;应边;A与与A,B与与B,C与与C是是对对应角应角.(1)小提示 全等用符号全等用符号“ ”表示,表示,读作读作“全等于全等于”. 在表示两个三角形全等在表示两个三角形全等时,通常把表示对应顶点的时,通常把表示对应顶点的字母写在对应位置上字母写在对应位置上.结论结论 全等三角形全等三角形的对应边相等的对应边相等; 全等三角形的全等三角形的对应角相等对应角相等. 我们知道,能够完全重合的两条我们知道,能够完全重合的两条线段是相等的,能够完全重合的线段是相等的,能够完全重合的两个角是相等的,由此得到:两个

4、角是相等的,由此得到: 例如例如,举举例例例例1 如图,已知如图,已知ABCDCB,AB=3,DB=4,A=60.(1)写出写出ABC和和DCB的对应边和对应的对应边和对应角角;(2)求求AC,DC的长及的长及D的度数的度数.解解(1)AB与与DC,AC与与DB,BC与与CB是对应边;是对应边;A与与D,ABC与与DCB,ACB与与DBC是对是对应角应角. AC = DB = 4, DC = AB =3.(2) AC与与DB, AB与与DC是全等三角形的对应边,是全等三角形的对应边,A与与D是全等三角形是全等三角形的对应角,的对应角,D =A = 60.练习练习 如图,已知如图,已知ADFCB

5、E,AD=4,BE=3,AF=6,A=20,B=120.(1)找出它们的所有对应边和对应角;找出它们的所有对应边和对应角;(2)求求ADF的周长及的周长及BEC的度数的度数.解解(1)AF与与CE,AD与与CB,DF与与BE是对应边;是对应边;A与与C,AFD与与CEB,D与与B是对应角是对应角. (2)ADF的周长是的周长是13,BEC=40.全等三角形的判定全等三角形的判定1 SAS本节内容 两个三角形满足什么条两个三角形满足什么条件就能全等呢件就能全等呢?下面我们就来探讨这个问题下面我们就来探讨这个问题. 每位同学在纸上的两个不同位每位同学在纸上的两个不同位置分别画一个三角形,它的一个角

6、置分别画一个三角形,它的一个角为为50,夹这个角的两边分别为,夹这个角的两边分别为2cm,2.5cm. 将这两个三角形叠在一将这两个三角形叠在一起,它们完全重合吗起,它们完全重合吗?由此你能得由此你能得到什么结论到什么结论?探究探究502cm2.5cm502cm2.5cm502cm2.5cm 我发现它们完全重合,我猜我发现它们完全重合,我猜测:有两边和它们的夹角分别相测:有两边和它们的夹角分别相等的两个三角形全等等的两个三角形全等. 下面,我们从以下这几种情形来下面,我们从以下这几种情形来探讨这个猜测是否为真探讨这个猜测是否为真.设在设在ABC和和 中中, ,(1)ABC和和 的位置关系如图的

7、位置关系如图.将将ABC作平移,使作平移,使BC的像的像 与与 重重合,合,ABC在平移下的像为在平移下的像为 . 由于平移不改变图形的形状和大小,因此由于平移不改变图形的形状和大小,因此ABC (2)ABC和和 的位置关系如的位置关系如图顶点图顶点B 与顶点与顶点 重合重合. .因为因为 ,将将ABC作绕点作绕点B的旋转,旋转角等于的旋转,旋转角等于 ,所以线段所以线段BC的像与线段的像与线段 重合重合. 因为因为 ,所以所以( (A) )B( (C) )由于旋转不改变图形的形状和大小,由于旋转不改变图形的形状和大小,又因为又因为 ,所以在上述旋转下,所以在上述旋转下,BA的像与的像与 重合

8、,重合,从而从而AC的像就与的像就与 重合,重合,于是于是ABC的像就是的像就是 因此因此 ABC ( (A) )B( (C) )(3)ABC和和 的位置关系如图的位置关系如图.根据情形根据情形(1),(2)的结论得的结论得将将ABC作平移,使顶点作平移,使顶点B的像的像 和顶点和顶点 重合,重合,因此因此(4)ABC和和 的位置关系如图的位置关系如图.将将ABC作关于直线作关于直线BC的轴反射,的轴反射,ABC在轴反射下的像为在轴反射下的像为 由于轴反射不改变图形的形状和大小,由于轴反射不改变图形的形状和大小,因此因此 ABC 根据情形根据情形(3)的结论得的结论得 ,因此因此由此得到判定两

9、个三角形全等的基本事实:由此得到判定两个三角形全等的基本事实:结论结论两边及其夹角分别相等的两个三角形两边及其夹角分别相等的两个三角形全等全等.通常可简写成通常可简写成“边角边边角边”或或“SAS”例例2 已知:如图,已知:如图,AB和和CD相交于相交于O,且,且AO=BO,CO=DO. 求证:求证:ACOBDO.举举例例证明:证明:在在ACO和和BDO中,中, ACO BDO.(SAS)AO = BO, AOC = BOD,(对顶角相等对顶角相等)CO = DO,练习练习1. 如图,将两根钢条如图,将两根钢条AA和和BB的中点的中点O连在一起,使钢条可以绕点连在一起,使钢条可以绕点O自由转动

10、,自由转动,就可做成测量工件内槽宽度的工具就可做成测量工件内槽宽度的工具(卡卡钳钳). .只要量出只要量出AB的长,就得出工件的长,就得出工件内槽的宽内槽的宽AB. 这是根据什么道理呢这是根据什么道理呢?解解 ABOABO,AB= AB.2. 如图,如图,ADBC,AD=BC. 问:问:ADC和和CBA是全等三角形吗是全等三角形吗?为为什么什么?解解 ADBC ADCCBA.DAC=BCA,又又 AD=BC,AC公共公共 3. 已知:如图,已知:如图,AB=AC,点,点E,F分别分别是是AC,AB的中点的中点. 求证:求证:BE=CF.解解 AB=AC, 且且 E,F分分别是别是 AC,AB中

11、点中点, ABEACF,AF=AE,又又 A公共公共, BE=CF.本节内容全等三角形的判定全等三角形的判定 2 ASA 动脑筋动脑筋如图,在如图,在 ABC和和 中,如果中,如果BC = , B= B, C= C,你能通过平移、旋转和轴反射等变换使你能通过平移、旋转和轴反射等变换使 ABC的像与的像与 重合吗重合吗?那么那么 ABC 与与 全等吗全等吗? 类似于基本事实类似于基本事实“SAS”的探究,的探究,同样地,我们可以通过平移、旋转和轴反射同样地,我们可以通过平移、旋转和轴反射等变换使等变换使ABC的像与的像与 重合,因此重合,因此ABC 结论结论由此得到判定两个三角形全等的基本事实:

12、由此得到判定两个三角形全等的基本事实:两角及其夹边分别相等的两个三角两角及其夹边分别相等的两个三角形全等形全等. 通常可简写成通常可简写成“角边角角边角”或或“ASA”举举例例例例3 已知:如图,点已知:如图,点A,F,E,C在在同一条直线上,同一条直线上,ABDC,AB=CD,B=D. 求证:求证:ABE CDF.证明证明 ABDC, A=C.在在ABE和和CDF中,中, ABE CDF (ASA).A=C,AB = CD,B=D,例例4 如图,为测量河宽如图,为测量河宽AB,小军从河岸的,小军从河岸的A点沿着和点沿着和AB垂直的方向走到垂直的方向走到C点,并在点,并在AC的的中点中点E处立

13、一根标杆,然后从处立一根标杆,然后从C点沿着与点沿着与AC垂直的方向走到垂直的方向走到D点,使点,使D,E,B恰好在一恰好在一条直线上条直线上. 于是小军于是小军 说:说:“CD的长就是河的长就是河的宽的宽.”你能说出这个道理吗?你能说出这个道理吗?图图3-35ABECD解解:在在AEB和和CED中,中, A = C = 90,AE = CE, AEB = CED ( (对顶角相等对顶角相等) ) AEB CED.(ASA) AB=CD .( (全等三角形的对应边相等全等三角形的对应边相等) )因此,因此,CD的长就是河的长就是河的宽度的宽度.练习练习1. 如图,工人师傅不小心把一块如图,工人

14、师傅不小心把一块三角形玻璃打碎成三块,现要到玻三角形玻璃打碎成三块,现要到玻璃店重新配一块与原来一样的三角璃店重新配一块与原来一样的三角形玻璃,只允许带其中的一块玻璃形玻璃,只允许带其中的一块玻璃碎片去碎片去. 请问应带哪块玻璃碎去请问应带哪块玻璃碎去?为什么为什么?答:应带玻璃碎片答:应带玻璃碎片去去;只有这块只有这块玻璃具备决定全等三角形的几个玻璃具备决定全等三角形的几个条件条件:在直角三角形中已知一个锐在直角三角形中已知一个锐角和一条直角边,由角和一条直角边,由AAS判定定判定定理即可确定两个三角形全等,故理即可确定两个三角形全等,故应带这块玻璃去应带这块玻璃去. 已知:如图,已知:如图

15、,ABC ,CF, 分别是分别是ACB 和和 的平分线的平分线. 求证:求证:证明:证明: ABC ABC, A = A , ACB = ACB. AC=AC CF=CF. 又又CF,CF分别是分别是ACB和和ACB的平分线的平分线, ACF= ACF. ACF ACF本节内容全等三角形的判定全等三角形的判定 3 AAS动动脑脑筋筋如图,在如图,在 ABC 和和 中,如果中,如果 A= A, B= B, ,那么那么 ABC和和 全等吗全等吗?根据三角形内角和定理,可将上述根据三角形内角和定理,可将上述条件转化为满足条件转化为满足“ASA”的条件,的条件,从而可以证明从而可以证明ABC在在 AB

16、C 和和 中,中, A = A, B = B, C = C.又又 , B= B, ( (ASA) ). 结论结论由此得到判定两个三角形全等的定理:由此得到判定两个三角形全等的定理: 两角分别相等且其中一组等角两角分别相等且其中一组等角的对边相等的两个三角形全等的对边相等的两个三角形全等.通常可简写成通常可简写成“角角边角角边”或或“AAS”. .例例5 已知:如图,已知:如图,B=D,1=2,求证:,求证:ABC ADC.举举例例证明证明 1 =2,ACB=ACD(同角的补角相等同角的补角相等). .在在ABC和和ADC中,中, ABC ADC (AAS).B =D,ACB =ACD,AC =

17、 AC,例例6 已知:如图,点已知:如图,点B,F,C,E在在同一条直线上,同一条直线上,ACFD,A=D,BF=EC. 求证:求证:ABC DEF.举举例例证明证明 ACFD,ACB =DFE. BF= EC, BF+FC=EC+FC,即即 BC=EF .在在ABC 和和DEF中,中, ABCDEF(AAS).A =D,ACB =DFE,BC = EF,练习练习1. 已知:如图,已知:如图,1=2,AD=AE. 求证:求证:ADCAEB. ADCAEB(AAS).1 =2,A = A,AD = AE,证明证明 在在ADC 和和AEB中,中,2. 已知:在已知:在ABC中,中,ABC =ACB

18、, BDAC于点于点D,CEAB于点于点E. 求证:求证:BD=CE.证明证明 由题意可知由题意可知BEC和和BDC均为均为 直角三角形直角三角形, 在在RtBEC和和RtCDB中,中,ABC =ACB ,BC = BC , RtBEC RtCDB(AAS).BEC =CDB=90 ,本节内容全等三角形的判定全等三角形的判定 4 SSS探探究究 如图,在如图,在 ABC和和 中,如果中,如果 , , 那么那么 ABC与与 全等吗全等吗? 如果能够说明如果能够说明A=A,那么就可以由那么就可以由“边角边边角边”得出得出ABC 将将ABC作平移、旋转和轴反射等变换,作平移、旋转和轴反射等变换,使使

19、BC的像的像 与与 重合,并使点重合,并使点A的的像像 与点与点 在在 的两旁,的两旁,ABC在上述在上述变换下的像为变换下的像为 . . 由上述变换性质可知由上述变换性质可知ABC ,则则 ,连接连接 1=2,3=4.从而从而1+3=2+4, , ,即即在在 和和 中,中, (SAS). . ABC ,结论结论由此可以得到判定两个三角形全等的由此可以得到判定两个三角形全等的基本事实:基本事实:三边分别相等的两个三角形全等三边分别相等的两个三角形全等.通常可简写成通常可简写成“边边边边边边”或或“SSS”. .举举例例例例7 已知:如图,已知:如图,AB=CD ,BC=DA. 求证:求证: B

20、=D.证明:证明: 在在 ABC和和CDA中,中, ABC CDA. ( (SSS) )AB=CD,BC=DA,AC=CA,( (公共边公共边) ) B = D.举举例例例例8 已知:如图,在已知:如图,在ABC中,中,AB=AC,点,点D,E在在BC上,且上,且AD=AE,BE=CD. 求证:求证:ABDACE.证明证明 BE = CD, BE- -DE = CD- -DE.即即 BD = CE.在在ABD和和ACE中,中, ABDACE (SSS).AB = AC,BD = CE,AD = AE,结论结论 由由“边边边边边边”可知,只要三角可知,只要三角形三边的长度确定,那么这个三角形三边

21、的长度确定,那么这个三角形的形状和大小也就固定了,三角形的形状和大小也就固定了,三角形的这个性质叫作形的这个性质叫作三角形的稳定性三角形的稳定性.结论结论 三角形的稳定性在生产和生活中三角形的稳定性在生产和生活中 有广泛的应用有广泛的应用. 如日常生活中的定位锁、房屋的人字如日常生活中的定位锁、房屋的人字梁屋顶等都采用三角形结构,其道理就是梁屋顶等都采用三角形结构,其道理就是运用三角形的稳定性运用三角形的稳定性. .练习练习1. 如图,已知如图,已知AD=BC,AC=BD. 那么那么1与与2相等吗相等吗?答:相等答:相等. 因为因为 AD=BC, AC=BD, AB公共公共, 所以所以 ABD

22、 BAC ( (SSS) ). 所以所以 1 = 2 ( (全等三角形对应角相等全等三角形对应角相等).).2. 如图,点如图,点A,C,B,D在同一条直线在同一条直线上,上, AC=BD,AE=CF,BE=DF. 求证:求证:AECF,BEDF.证明证明 AC=BD, AC+ +BC=BD+ +BC ,即即 AB=CD .所以所以 AECF,BEDF.又又 AE=CF,BE=DF,所以所以 ABE CDF ( (SSS) ).所以所以 EAB = FCD, EBA = FDC ( (全等三角形对应角相等全等三角形对应角相等) ). .本节内容全等三角形的判定应用全等三角形的判定应用议一议议一

23、议根据下列条件,分别画根据下列条件,分别画ABC和和(1) , , B=B= 45; 满足上述条件画出的满足上述条件画出的ABC和和 一定全等吗一定全等吗?由此你能得出什么结论由此你能得出什么结论? 满足条件的两个三角形不一定满足条件的两个三角形不一定全等,由此得出:两边分别相等且全等,由此得出:两边分别相等且其中一组等边的对角相等的两个三其中一组等边的对角相等的两个三角形不一定全等角形不一定全等.(2) A=A= 80,B=B= 30, C=C=70. 满足上述条件画出的满足上述条件画出的ABC和和 一定全等吗一定全等吗?由此你能得出什么结论由此你能得出什么结论? 满足条件的两个三角形不一定

24、满足条件的两个三角形不一定全等,由此得出:三角分别相等的全等,由此得出:三角分别相等的两个三角形不一定全等两个三角形不一定全等.举举例例例例9 已知:如图,已知:如图,AC与与BD相交于相交于点点O,且,且AB= DC,AC = DB. 求证:求证:A =D.证明证明 连接连接BC.在在ABC和和DCB中,中, ABC DCB (SSS) A =D.AB = DC,BC = CB (公共边公共边),),AC = DB ,举举例例例例10 某地在山区修建高速公路时需某地在山区修建高速公路时需挖通一条隧道挖通一条隧道. 为估测这条隧道的长为估测这条隧道的长度度(如图如图),需测出这座山,需测出这座

25、山A,B间的间的距离,结合所学知识,你能给出什么距离,结合所学知识,你能给出什么好方法吗好方法吗?解解 选择某一合适的地点选择某一合适的地点O,使得从使得从O点能测出点能测出AO与与BO的长度的长度. 这样就构造出两个这样就构造出两个三角形三角形.连接连接AO并延长至并延长至A,使,使 ;连接连接BO并延长至并延长至B, 使使 ,连接连接 ,OAB在在AOB和和 中,中, , , , AOB (SAS). . AB = 因此只要测出因此只要测出 的长度就能得到这座山的长度就能得到这座山 A,B间的距离间的距离.练习练习1. 已知:如图,已知:如图,AB=AD,BC=DC. 求证:求证:B =D

26、.证明证明 如图,连接如图,连接AC. .所以所以 ACB ACD ( (SSS) ).所以所以 B =D.在在ACB和和ACD中,中,AB = AD,BC = CD ,AC = AC (公共边公共边) ,2. 如图,在如图,在ABC和和DEC中,已知一些相等中,已知一些相等的边或角,请再补充适当的条件,从而能运用的边或角,请再补充适当的条件,从而能运用已学的判定方法来判定已学的判定方法来判定ABC DEC.已知条件已知条件补充条件补充条件判定判定方法方法AC=DC,A=DSASA=D, AB=DEASAA=D,AB=DEAASAC=DC,AB=DESSSAB=DEB=EACB=DCEBC=EC 如图,在如图,在ABC与与DEF中,已知中,已知条件条件AB=DE,还需添加两个条件才能使,还需添加两个条件才能使ABC DEF,不能添加的一组条件,不能添加的一组条件是是( ). .A. .B=E,BC=EF B. BC=EF,AC=DF C. A=D,B=E D. A=D,BC=EF中考中考 试题试题例例1 D例例2 如图如图4.2-2, ACB , BCB=30, 则则 ACA的度数为的度数为( ). . A. .20 B. 30 C. 35 D. 40B解解ACB , , .故选故选B.

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 研究生课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号