回归分析的基本思想及其初步应用教程

上传人:M****1 文档编号:569564066 上传时间:2024-07-30 格式:PPT 页数:38 大小:828KB
返回 下载 相关 举报
回归分析的基本思想及其初步应用教程_第1页
第1页 / 共38页
回归分析的基本思想及其初步应用教程_第2页
第2页 / 共38页
回归分析的基本思想及其初步应用教程_第3页
第3页 / 共38页
回归分析的基本思想及其初步应用教程_第4页
第4页 / 共38页
回归分析的基本思想及其初步应用教程_第5页
第5页 / 共38页
点击查看更多>>
资源描述

《回归分析的基本思想及其初步应用教程》由会员分享,可在线阅读,更多相关《回归分析的基本思想及其初步应用教程(38页珍藏版)》请在金锄头文库上搜索。

1、1.1回归分析的基本思想及其初步应用回归分析的基本思想及其初步应用教程必修3(3(第二章 统计) )知识结构 收集数据 ( (随机抽样) )整理、分析数据估计、推断简单随机抽样分层抽样系统抽样用样本估计总体变量间的相关关系 用样本的频率分布估计总体分布 用样本数字特征估计总体数字特征线性回归分析回归分析的基本思想及其初步应用教程1、两个变量的关系不相关相关关系函数关系线性相关非线性相关问题1:现实生活中两个变量间的关系有哪些呢?相关关系:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系。回归分析的基本思想及其初步应用教程函数关系中的两个变量间是一种确定性关系相关

2、关系是一种非确定性关系 函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一般的情况回归分析的基本思想及其初步应用教程问题2:对于线性相关的两个变量用什么方法来刻划之间的关系呢?2、最小二乘估计最小二乘估计下的线性回归方程:回归分析的基本思想及其初步应用教程回归直线必过样本点的中心回归分析的基本思想及其初步应用教程3、回归分析的基本步骤:画散点图求回归方程预报、决策这种方法称为回归分析.回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.回归分析的基本思想及其初步应用教程回归分析知识结构图问题背景分析线性回归模型两个变量线性相关最小二乘法两个变量非线性相关非线性回归模型

3、残差分析散点图应用回归分析的基本思想及其初步应用教程数学统计1.画散点图2.了解最小二乘法的思想3.求回归直线方程ybxa4.用回归直线方程解决应用问题选修1-2统计案例5.引入线性回归模型ybxae6.了解模型中随机误差项e产生的原因7.了解相关指数 R2 和模型拟合的效果之间的关系8.了解残差图的作用9.利用线性回归模型解决一类非线性回归问题10.正确理解分析方法与结果回归分析的基本思想及其初步应用教程教学情境设计问题一:结合例1得出线性回归模型及随机误差。并且区分函数 模型和回归模型。问题二:在线性回归模型中,e是用bx+a预报真实值y的随机误差, 它是一个不可观测的量,那么应如何研究随

4、机误差呢?问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?问题四:结合例1思考:用回归方程预报体重时应注意什么?问题五:归纳建立回归模型的基本步骤。问题六:若两个变量呈现非线性关系,如何解决?(分析例2)回归分析的基本思想及其初步应用教程例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。问题一:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型

5、。解:1、选取身高为自变量x,体重为因变量y,作散点图:回归分析的基本思想及其初步应用教程2.回归方程:探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:用这个回归方程不能给出每个身高为172cm的女大学生的体重的预测值,只能给出她们平均体重的估计值。回归分析的基本思想及其初步应用教程由于所有的样本点不共线,而只是散布在某一直线的附近,所以身高和体重的关系可以用线性回归模型来表示:其中a和b为模型的未知参数,e称为随机误差.回归分析的基本思想及其初步应用教程函数模型与“回归模型”的关系函数模型:因变量y完全由自变量x确定回归模型: 预报变量y完全

6、由解释变量x和随机误差e确定回归分析的基本思想及其初步应用教程注:e 产生的主要原因: (1)所用确定性函数不恰当; (2)忽略了某些因素的影响; (3)观测误差。思考:产生随机误差项e的原因是什么?回归分析的基本思想及其初步应用教程问题二:在线性回归模型中,e是用bx+a预报真实值y的随机误差, 它是一个不可观测的量,那么应如何研究随机误差呢? 结合例1除了身高影响体重外的其他因素是不可测量的,不能希望有某种方法获取随机误差的值以提高预报变量的估计精度,但却可以估计预报变量观测值中所包含的随机误差,这对我们查找样本数据中的错误和模型的评价极为有用,因此在此我们引入残差概念。e=y-(bx+a

7、)回归分析的基本思想及其初步应用教程随机误差e的估计量样本点:相应的随机误差为:随机误差的估计值为:称为相应于点 的残差.回归分析的基本思想及其初步应用教程问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?(1)我们可以通过分析发现原始数据中的可疑数据,判断建立模型的拟合效果。回归分析的基本思想及其初步应用教程残差图的制作和作用:制作:坐标纵轴为残差变量,横轴可以有不同的选择. . 横轴为编号:可以考察残差与编号次序之间的关系, 常用于调查数据错误. . 横轴为解释变量:可以考察残差与解释变量的关系,常用于研究模型是否有改进的余地. .作用:判断模型的适用性若模型选择的正确,残差图中的

8、点应该分布在以横轴为中心的带形区域. .回归分析的基本思想及其初步应用教程下面表格列出了女大学生身高和体重的原始数据以及相应的残差数据。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382回归分析的基本思想及其初步应用教程残差图的制作及作用。坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;对于远离横轴的点,要特别注意。身高与体重残差图异常点 错误数据 模型问题 几点说明: 第一个样本

9、点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。 另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。回归分析的基本思想及其初步应用教程误差与残差,这两个概念在某程度上具有很大的相似性,都是衡量不确定性的指标,可是两者又存在区别。误差与测量有关,误差大小可以衡量测量的准确性,误差越大则表示测量越不准确。误差分为两类:系统误差与随机误差。其中,系统误差与测量方案有关,通过改进测量

10、方案可以避免系统误差。随机误差与观测者,测量工具,被观测物体的性质有关,只能尽量减小,却不能避免。 残差与预测有关,残差大小可以衡量预测的准确性。残差越大表示预测越不准确。残差与数据本身的分布特性,回归方程的选择有关。回归分析的基本思想及其初步应用教程显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。 R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析变量和预报变量的线性相关性越强)。 如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。注

11、:相关指数R R2 2是度量模型拟合效果的一种指标。在线性模型中,它代表自变量刻画预报变量的能力。(2)我们可以用相关指数R2来刻画回归的效果,其计算公式是回归分析的基本思想及其初步应用教程相关系数的性质(1)|r|1(1)|r|1(2)|r|(2)|r|越接近于1 1,相关程度越强;|r|r|越接近于0 0,相关程度越弱注:b :b 与 r r 同号问题:达到怎样程度,x x、y y线性相关呢?它们的相关程度怎样呢?回归分析的基本思想及其初步应用教程相关系数正相关;负相关通常:r r-1,-0.75-1,-0.75-负相关很强; ; r r0.75,10.75,1正相关很强; ; r r-0

12、.75,-0.3-0.75,-0.3-负相关一般; ; r r0.3, 0.750.3, 0.75正相关一般; ; r r-0.25, 0.25-0.25, 0.25-相关性较弱; ; 对r r进行显著性检验 回归分析的基本思想及其初步应用教程1354总计0.36128.361残差变量0.64225.639回归变量比例平方和来源 从上中可以看出,解析变量对总效应约贡献了64%,即R2 0.64,可以叙述为“身高解析了64%的体重变化”,而随机误差贡献了剩余的36%。 所以,身高对体重的效应比随机误差的效应大得多。下面我们用相关指数分析一下例1:预报变量的变化程度可以分解为由解释变量引起的变化程

13、度与残差变量的变化程度之和,即; 回归分析的基本思想及其初步应用教程问题四:结合例1思考:用回归方程预报体重时应注意什么?1.回归方程只适用于我们所研究的样本的总体。2.我们建立的回归方程一般都有时间性。3.样本取值的范围会影响回归方程的适用范围。4.不能期望回归方程得到的预报值就是预报变量的精确值。涉及到统计的一些思想:模型适用的总体;模型的时间性;样本的取值范围对模型的影响;模型预报结果的正确理解。回归分析的基本思想及其初步应用教程一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关

14、系 (如是否存在线性关系等)。(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。问题五:归纳建立回归模型的基本步骤回归分析的基本思想及其初步应用教程问题六:若两个变量呈现非线性关系,如何解决?(分析例2)例2 一只红铃虫的产卵数y和温度x有关。现收集了7组观测数据列于表中:温度xoC21232527293235产卵数y/个711212466115325(1

15、 1)试建立产卵数y y与温度x x之间的回归方程;并预测温度为2828o oC C时产卵数目。(2 2)你所建立的模型中温度在多大程度上解释了产卵数的变化? 回归分析的基本思想及其初步应用教程选变量 解:选取气温为解释变量x x,产卵数 为预报变量y y。画散点图假设线性回归方程为 :=bx+a选 模 型分析和预测当x=28时,y =19.8728-463.73 93估计参数由计算器得:线性回归方程为y=y=19.8719.87x x-463.73-463.73 相关指数R R2 2= =r r2 20.8640.8642 2=0.7464=0.7464所以,一次函数模型中温度解释了74.6

16、4%的产卵数变化。050100150200250300350036912151821242730333639当x=28时,y =19.8728-463.73 93方法一:一元函数模型回归分析的基本思想及其初步应用教程 y= c1 x2+c2 变换 y= c1 t+c2 非线性关系 线性关系问题选用y=c1x2+c2 ,还是y=c1x2+cx+c2 ?问题3 产卵数气温问题2如何求c1、c2? t=x2方法二,二元函数模型回归分析的基本思想及其初步应用教程平方变换:令t=xt=x2 2,产卵数y y和温度x x之间二次函数模型y=bxy=bx2 2+a+a就转化为产卵数y y和温度的平方t t之

17、间线性回归模型y=bt+ay=bt+a温度21232527293235温度的平方t44152962572984110241225产卵数y/个711212466115325作散点图,并由计算器得:y y和t t之间的线性回归方程为y=y=0.3670.367t t-202.54-202.54,相关指数R R2 2= =r r2 20.8960.8962 2=0.802=0.802将t=xt=x2 2代入线性回归方程得: y=y=0.3670.367x x2 2 -202.54 -202.54当x x=28=28时,y y=0.36728=0.367282 2- -202.5485202.5485

18、,且R R2 2=0.802=0.802,所以,二次函数模型中温度解释了80.2%80.2%的产卵数变化。t回归分析的基本思想及其初步应用教程产卵数气温 变换 y=bx+a 非线性关系 线性关系对数方法三:指数函数模型回归分析的基本思想及其初步应用教程温度x/21232527Z=lny1.9462.3983.4053.178产卵数y/个71121242932354.1904.745 5.78466115325由计算器得:z关于x的线性回归方程相关指数 因此y关于x的非线性回归方程为当x=28 时,y 44 ,指数回归模型中温度解释了98%的产卵数的变化回归分析的基本思想及其初步应用教程函数模型

19、相关指数R2线性回归模型0.7464二次函数模型0.802指数函数模型0.98最好的模型是哪个?显然,指数函数模型最好!回归分析的基本思想及其初步应用教程利用残差计算公式:77.968-58.265-40.104-41.000-5.83219.40047.69634.675-13.3819.230-8.9501.875-0.1010.557325115662421117Y35322927252321X由残差平方和:故指数函数模型的拟合效果比二次函数的模拟效果好.或由条件R2分别为0.98和0.80,同样可得它们的效果.回归分析的基本思想及其初步应用教程在散点图中,样本点没有分布在某个带状区域内

20、,因此两个变量不呈现线性相关关系,所以不能直接利用线性回归方程来建立两个变量之间的关系.令z=lny,则变换后样本点应该分布在直线z=bx+a(a=lnc1,b=c2)的周围.利用线性回归模型建立y和x之间的非线性回归方程.当回归方程不是形如y=bx+a时,我们称之为非线性回归方程.根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线 的周围,其中c1和c2是待定参数.回归分析的基本思想及其初步应用教程课堂知识延伸 我们知道,刑警如果能在案发现场提取到罪犯的脚印,即将获得一条重要的破案线索,其原因之一是人类的脚掌长度和身高存在着相关关系,可以根据一个人的脚掌长度来来预测他的身高 我们还知

21、道,在统计史上,很早就有人收集过人们的身高、前臂长度等数据,试图寻找这些数据之间的规律 在上述两个小故事的启发下,全班同学请分成一些小组,每组4-6名同学,在老师的指导下,开展一次数学建模活动,来亲自体验回归分析的思想方法,提高自己的实践能力。 数学建模的题目是:收集一些周围人们的脚掌长度、前臂长度中的一个数据及其身高,来作为两个变量画散点图,如果这两个变量之间具有线性相关关系,就求出回归直线方程,另选一个人的这两个变量的数据,作一次预测,并分析预测结果。 最后以小组写出数学建模报告,报告要求过程清晰,结论明确,有关数学论述准确,以下两个问题需要注意: (1)如果脚掌长度不方便,可改量脚印的长度。 (2)数据尽量取得分散一些。回归分析的基本思想及其初步应用教程

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号