文档详情

(课标专用 5年高考3年模拟A版)高考数学 专题九 平面解析几何 3 椭圆及其性质试题 理-人教版高三数学试题

M****1
实名认证
店铺
DOCX
142.66KB
约24页
文档ID:569137409
(课标专用 5年高考3年模拟A版)高考数学 专题九 平面解析几何 3 椭圆及其性质试题 理-人教版高三数学试题_第1页
1/24

椭圆及其性质挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.椭圆的定义及标准方程掌握椭圆的定义、几何图形、标准方程及简单性质2014课标Ⅰ,20,12分求椭圆的方程三角形面积最值★★★2.椭圆的几何性质2018课标Ⅱ,12,5分求椭圆离心率直线方程★★★2017课标Ⅲ,10,5分求椭圆离心率直线与圆的位置关系2016课标Ⅲ,11,5分求椭圆离心率线段中点坐标公式、三点共线3.直线与椭圆的位置关系2018课标Ⅲ,20,12分直线与椭圆的位置关系向量坐标运算、等差数列★★★分析解读  从近5年高考情况来看,椭圆的定义、标准方程、几何性质一直是高考命题的热点,其中离心率问题考查较频繁,对直线与椭圆的位置关系的考查,常与向量、圆、三角形等知识相结合,多以解答题的形式出现,解题时,要充分利用数形结合、转化与化归思想,注重数学思想在解题中的指导作用.破考点【考点集训】考点一 椭圆的定义及标准方程1.(2018湖北十堰十三中质检,6)一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2,3)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆的方程为(  )                  A.x28+y26=1    B.x216+y26=1C.x24+y22=1    D.x28+y24=1答案 A 2.(2018山东烟台二模,15)已知F(2,0)为椭圆x2a2+y2b2=1(a>b>0)的右焦点,过F且垂直于x轴的弦长为6,若A(-2,2),点M为椭圆上任一点,则|MF|+|MA|的最大值为    . 答案 8+2考点二 椭圆的几何性质1.(2018山东青岛城阳期末,7)若椭圆x25+y2a=1的焦距为4,则实数a的值为(  )A.1    B.21    C.4    D.1或9答案 D 2.(2018河北衡水金卷二模,7)我国自主研制的第一个月球探测器——“嫦娥一号”卫星在西昌卫星发射中心成功发射后,在地球轨道上经历3次调相轨道变轨,奔向月球,进入月球轨道,“嫦娥一号”轨道是以地心为一个焦点的椭圆,设地球半径为R,卫星近地点,远地点离地面的距离分别是R2,5R2(如图所示),则“嫦娥一号”卫星轨道的离心率为(  )A.25    B.15    C.23    D.13答案 A 3.(2018河南南阳、信阳等六市联考,16)椭圆C:x24+y23=1的上、下顶点分别为A1,A2,点P在C上且直线PA2斜率的取值范围是[-2,-1],那么直线PA1斜率的取值范围是    . 答案 38,34考点三 直线与椭圆的位置关系1.(2018安徽合肥模拟,8)已知椭圆C:x22+y2=1,若一组斜率为14的平行直线被椭圆C所截线段的中点均在直线l上,则l的斜率为(  )A.-2    B.2    C.-12    D.12答案 A 2.(2018广东广州模拟,10)已知点M(-1,0)和N(1,0),若某直线上存在点P,使得|PM|+|PN|=4,则称该直线为“椭型直线”.现有下列直线:①x-2y+6=0;②x-y=0;③2x-y+1=0;④x+y-3=0.其中是“椭型直线”的是(  )A.①③    B.①②    C.②③    D.③④答案 C 炼技法【方法集训】方法 求椭圆离心率或取值范围的方法1.(2018江西赣南五校联考,15)椭圆Γ:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=3(x+c)与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于    . 答案 3-12.(2017福建四地六校模拟,15)已知椭圆C:x2a2+y2b2=1(a>b>0)和圆O:x2+y2=b2,若C上存在点P,使得过点P引圆O的两条切线,切点分别为A,B,满足∠APB=60°,则椭圆C的离心率的取值范围是    . 答案 32,13.(2018河北衡水中学八模,15)已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1(-c,0)、F2(c,0),若椭圆上存在点P使asin∠PF1F2=csin∠PF2F1,则该椭圆离心率的取值范围为    . 答案 (2-1,1)过专题【五年高考】A组 统一命题·课标卷题组考点一 椭圆的定义及标准方程 (2014课标Ⅰ,20,12分)已知点A(0,-2),椭圆E:x2a2+y2b2=1(a>b>0)的离心率为32,F是椭圆E的右焦点,直线AF的斜率为233,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.解析 (1)设F(c,0),由条件知,2c=233,得c=3.又ca=32,所以a=2,b2=a2-c2=1.故E的方程为x24+y2=1.(2)当l⊥x轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入x24+y2=1得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)>0,即k2>34时,x1,2=8k±24k2-34k2+1.从而|PQ|=k2+1|x1-x2|=4k2+1·4k2-34k2+1.又点O到直线PQ的距离d=2k2+1,所以△OPQ的面积S△OPQ=12d·|PQ|=44k2-34k2+1.设4k2-3=t,则t>0,S△OPQ=4tt2+4=4t+4t.因为t+4t≥4,当且仅当t=2,即k=±72时等号成立,且满足Δ>0,所以,当△OPQ的面积最大时,l的方程为y=72x-2或y=-72x-2.思路分析 (1)通过直线AF的斜率求得c的值,通过离心率求得a,进而求出b2,从而得到E的方程;(2)设出直线l的方程和点P、Q的坐标,联立直线l与椭圆方程,利用弦长公式求得|PQ|的长,根据点到直线的距离公式求得△OPQ边PQ上的高,从而表示出△OPQ的面积,利用换元法和基本不等式即可得到当面积取得最大值时k的值,从而得直线l的方程.解题关键 对于第(2)问,正确选择参数,表示出△OPQ的面积,进而巧妙利用换元法分析最值是解题的关键.考点二 椭圆的几何性质1.(2018课标Ⅱ,12,5分)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为36的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为(  )                  A.23    B.12    C.13    D.14答案 D 2.(2017课标Ⅲ,10,5分)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为(  )A.63    B.33    C.23    D.13答案 A 3.(2016课标Ⅲ,11,5分)已知O为坐标原点,F是椭圆C:x2a2+y2b2=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为 (  )A.13    B.12    C.23    D.34答案 A 考点三 直线与椭圆的位置关系 (2018课标Ⅰ,19,12分)设椭圆C:x22+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.解析 (1)由已知得F(1,0),l的方程为x=1,由已知可得,点A的坐标为1,22或1,-22.所以AM的方程为y=-22x+2或y=22x-2.(2)当l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,直线OM为AB的垂直平分线,所以∠OMA=∠OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),则x1<2,x2<2,直线MA,MB的斜率之和为kMA+kMB=y1x1-2+y2x2-2,由y1=kx1-k,y2=kx2-k得kMA+kMB=2kx1x2-3k(x1+x2)+4k(x1-2)(x2-2).将y=k(x-1)代入x22+y2=1得(2k2+1)x2-4k2x+2k2-2=0,所以,x1+x2=4k22k2+1,x1x2=2k2-22k2+1.则2kx1x2-3k(x1+x2)+4k=4k3-4k-12k3+8k3+4k2k2+1=0,从而kMA+kMB=0,故MA,MB的倾斜角互补,所以∠OMA=∠OMB.综上,∠OMA=∠OMB.B组 自主命题·省(区、市)卷题组考点一 椭圆的定义及标准方程1.(2014安徽,14,5分)设F1,F2分别是椭圆E:x2+y2b2=1(0b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为12c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=52的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.解析 (1)过点(c,0),(0,b)的直线方程为bx+cy-bc=0,则原点O到该直线的距离d=bcb2+c2=bca,由d=12c,得a=2b=2a2-c2,可得离心率ca=32.(2)解法一:由(1)知,椭圆E的方程为x2+4y2=4b2.①依题意,圆心M(-2,1)是线段AB的中点,且|AB|=10.易知,AB与x轴不垂直,设其方程为y=k(x+2)+1,代入①得(1+4k2)x2+8k(2k+1)x+4(2k+1)2-4b2=0.设A(x1,y1),B(x2,y2),则x1+x2=-8k(2k+1)1+4k2,x1x2=4(2k+1)2-4b21+4k2.由x1+x2=-4,得-8k(2k+1)1+4k2=-4,解得k=12.从而x1x2=8-2b2.于是|AB|=1+122|x1-x2|=52(x1+x2)2-4x1x2=10(b2-2).由|AB|=10,得10(b2-2)=10,解得b2=3.故椭圆E的方程为x212+y23=1.解法二:由(1)知,椭圆E的方程为x2+4y2=4b2.②依题意,点A,B关于圆心M(-2,1)对称,且|AB|=10.设A(x1,y1),B(x2,y2),则x12+4y12=4b2,x22+4y22=4b2,两式相减并结合x1+x2=-4,y1+y2=2,得-4(x1-x2)+8(y1-y2)=0,易知AB与x轴不垂直,则x1≠x2,所以AB的斜率kAB=y1-y2x1-x2=12.因此直线AB的方程为y=12(x+2)+1,代入②得x2+4x+8-2b2=0.所以x1+x2=-4,x1x2=8-2b2.于是|AB|=1+122|x1-x2|=52(x1+x2)2-4x1x2=10(b2-2).由|AB|=10,得10(b2-2)=10,解得b2=3.故椭圆E的方程为x212+y23=1。

下载提示
相似文档
正为您匹配相似的精品文档