生物小角散射BioSAXS

上传人:大米 文档编号:568558906 上传时间:2024-07-25 格式:PPT 页数:88 大小:14.94MB
返回 下载 相关 举报
生物小角散射BioSAXS_第1页
第1页 / 共88页
生物小角散射BioSAXS_第2页
第2页 / 共88页
生物小角散射BioSAXS_第3页
第3页 / 共88页
生物小角散射BioSAXS_第4页
第4页 / 共88页
生物小角散射BioSAXS_第5页
第5页 / 共88页
点击查看更多>>
资源描述

《生物小角散射BioSAXS》由会员分享,可在线阅读,更多相关《生物小角散射BioSAXS(88页珍藏版)》请在金锄头文库上搜索。

1、OutlineSAXS experiment setup3D 2D 1DData reduction and analysisShape and sizeOverall parametersAb initio shape determinationOther methodsAutomationsolutionSmall Angle X-ray Scattering|s| = 4 sin/s scattering vector2 scattering angle wavelengthI(s) intensitySynchrotron Radiation X-ray detector2sHomog

2、eneous andMonodisperse solutionsolventExperiment Setup1-2 mg purified materialconcentration from 0.5 mg/ml, exposure times: a few seconds/minutesX-ray detectorsolutionsolventSynchrotron RadiationSynchrotron Radiation sI(s)Small Angle X-ray ScatteringExperiment Setup1-2 mg purified materialconcentrat

3、ion from 0.5 mg/ml, exposure times: a few seconds/minutesBeambeamstophigher anglelower angleBeamSmall Angle X-ray ScatteringExposureX-ray detectorSmall Angle X-ray ScatteringExposureX-ray detectorNormalization against: data collection time, concentration, transmitted sample intensity.Log I(s),a.u.s,

4、 nm-1|s| = 4 sin/Small Angle X-ray ScatteringRadial averagingBackground subtractionShape and sizelysozymeLog I(s)a.u.s, nm-1Shape and sizelysozymeapoferritinLog I(s)a.u.s, nm-1Crystalsolutionsolutionvs. Thousands of reflectionsThousands of reflections 3D, high resolution3D, high resolution A few Sha

5、nnon channelsA few Shannon channels 1D, low resolution1D, low resolutionCrystalsolutionvs.Crystalsolutionvs.No need to grow crystalsNo need to grow crystalsNo crystallographic packing No crystallographic packing forces are presentforces are presentNot limited by molecular massNot limited by molecula

6、r massApplicable under nearly any Applicable under nearly any physiological conditionsphysiological conditionsObserve responses to changes Observe responses to changes in conditionsin conditionsQuantitative analysis of complex Quantitative analysis of complex systems and processessystems and process

7、esSAXSData processingData qualityRadiation damageLog I(s), a.u.s, nm-1sampleData qualityRadiation damages, nm-1samplesame sample againRADIATION DAMAGE!Log I(s), a.u.Background subtractionsamplesamplebufferLog I(s),a.u.sample buffer(subtracted)Log I(s),a.u.s, nm-1s, nm-1Solution minus SolventLooking

8、for protein signals less than 5% above background levelData quality“Can I use this data for further analysis?”Log I(s)s, nm-1lysozymeLog I(s)s, nm-1AGGREGATED!Data rangeAtomic structureFoldShape051015Log I(s)5678Resolution, nm2.001.000.670.500.33Sizes, nm-1 Dmitri SvergunMerging dataLow and High Con

9、centrationLog I(s)s, nm-1YtvA protein (60 kDa), 1 mg/mlMerging dataLow and High ConcentrationLog I(s)s, nm-11 mg/ml10 mg/mlMerging dataLow and High ConcentrationLog I(s)s, nm-1Merging dataLow and High ConcentrationLog I(s)s, nm-1Merging dataLow and High ConcentrationLog I(s)s, nm-1Merging dataLow an

10、d High ConcentrationLog I(s)s, nm-1Extrapolation to zero concentrationInfinite dilutionLog I(s)s, nm-110 mg/ml1 mg/ml0 mg/ml?SizeLog I(s)s, -1SizeLog I(s)s, -1SizeLog I(s)s, -1Radius of gyration (Rg)DefinitionAverage of square center-of-mass distances in the moleculeweighted by the scattering length

11、 densityMeasure for the overall size of a macromoleculeLog I(s)sGuinier plotRadius of gyration (Rg)Log I(s)sGuinier plotLog I(s)sRadius of gyration (Rg)Ln I(s)s2Guinier plotRadius of gyration (Rg)Ln I(s)s2Guinier plotRadius of gyration (Rg)Log I(s)sNormal Log plotLn I(s)s2Estimate of the overall siz

12、e of the particlesGuinier approximation:I(s) = I(0)exp(-s2Rg2/3)sRg1.3Guinier ploty = ax + b Rg = sqrt(-3a)Andr Guinier1911-2000Radius of gyration (Rg)Ln I(s)s2Estimate of the overall size of the particlesQuality of the dataaggregationpolydispersityimproper background substractionZero angle intensit

13、y I(0)First point to useGuinier approximation:I(s) = I(0)exp(-s2Rg2/3)sRg1.3Guinier ploty = ax + b Rg = sqrt(-3a)Radius of gyration (Rg)s, 1/nmBovine serum albumin (BSA)Log I(s)Radius of gyration (Rg)Ln I(s)s2Guinier plotRadius of gyration (Rg)Ln I(s)s2AUTORGRadius of gyration (Rg)Check all reasonab

14、le linear intervalsFind bestsminRg 1.0smaxRg 1.3Fit qualityGuinier plotLn I(s)s2Guinier plotRadius of gyration (Rg)Ln I(s)s2Guinier plotRadius of Gyration (Rg)y = ax + bRg = sqrt(-3a)Ln I(0)Ln I(s)s2Guinier plotRadius of Gyration (Rg)Rg stdevForward scattering I(0)Data qualityData rangeLn I(0)lysozy

15、meapoferritinLog I(s), a.u.s, nm-1Guinier approximationMolecular massLog I(0)lysLog I(0)apoI(0) and Molecular MassMMsampleMMBSAI(0)sampleI(0)BSA=Rg = 1.46 nmI(0) = 3.66MM = 20.6 kDaMMsample = I(0) sample* MMBSA / I(0)BSARg = 6.81 nmI(0) = 79.45MM = 448.2 kDaRg = 3.1 nmI(0) = 11.7MMBSA = 66 kDaBSAI(0

16、) and Molecular MassMMsampleMMBSAI(0)sampleI(0)BSA=Rg = 1.46 nmI(0) = 3.66MM = 20.6 kDaMMsample = I(0) sample* MMBSA / I(0)BSARg = 6.81 nmI(0) = 79.45MM = 448.2 kDaRg = 3.1 nmI(0) = 11.7MMBSA = 66 kDaBSAPorod lawI(s) s-4Intensity decay is proportional to s-4 at higher angles (for globular particles

17、of uniform density)Porod lawExcluded volume of the hydrated particleK4 is a constant determined to ensure the asymptotical intensity decay proportional to s-4 at higher angles following the Porods law for homogeneous particlesPorod plot974 nm974 nm3 314 nm14 nm3 3I(s)*s4I(s)*s4ssPrimusExcluded volum

18、e of the hydrated particle9 kDa9 kDa610 kDa610 kDap(r) functionDistance distribution functionr, nmp(r)p(r) functionDistance distribution functionp(r) functionDistance distribution functionIndirect Fourier Transformp(r)p(r)I(s)I(s)p(r) plotDistance distribution functionr, nmr, nmp(r)p(r)GnomDmaxDmaxr

19、, nmp(r)DmaxData qualityI(s)s, 1/nmsminr, nmp(r)DmaxData qualitysmin /DmaxI(s)s, 1/nmsminYeast bleomycin hydrolase 3GCB 50 kDa MonomerCompact dimerExtended dimerHexamerp(r) plotYeast bleomycin hydrolase 3GCB 50 kDa Monomer Compact dimer Extended dimer Hexamerp(r) plot50 kDa Monomer Compact dimer Ext

20、ended dimer HexamerYeast bleomycin hydrolase 3GCB GoodBadSAXS studies of biological macromoleculesRadius of gyrationMolecular massExcluded volumeSAXS studies of biological macromoleculesRadius of gyrationMolecular massExcluded volumeRgMMVolumeAb initio shape determinationDmaxSolventParticleChacn, P.

21、 et al. (1998) Biophys. J. 74, 2760-2775Svergun, D.I. (1999) Biophys. J. 76, 2879-2886Densely packed beadsMonte-Carlo type searchFind a configuration that yields the calculated scattering curve fitting the experimental dataAb initio shape determinationBead modelAb initio shape determinationDAMMINDis

22、connected Loose CompactP222 symmetryAb initio shape determinationTetrameric pyruvate oxidase from yeast, 240 kDal structure DAMMINTetrameric pyruvate oxidase from yeast Comparison of the ab initio model with the crystal structure Ab initio shape determinationAb initio shape determinationSAXS studies

23、 of biological macromoleculesRgMMVolumeSAXS studies of biological macromoleculesRgMMVolumeShapeValidation in solutionSAXS studies of biological macromoleculesRgMMVolumeShapeRigid body modellingSAXS studies of biological macromoleculesRgMMVolumeShapeRigid body modellingSASREFInterconnectivityAbsence

24、of steric clashes SymmetryIntersubunit contacts (from chemical shifts by NMR or mutagenesis) Distances between residues (FRET or mutagenesis) Relative orientation of subunits (RDC by NMR)Scattering data from subcomplexesSASREF: Petoukhov & Svergun (2005) Biophys J. 89, 1237; (2006) Eur. Biophys. J.

25、35, 567.Huge amount of structural information about individual macromolecules Large macromolecular complexes are difficult to study by high resolution methods High resolution models of subunits can be used to model the quaternary structure of complexes based on low resolution methodsSAXS studies of

26、biological macromoleculesRgMMVolumeShapeRigid body modellingAdd missing fragmentsSAXS studies of biological macromoleculesRgMMVolumeShapeRigid body modellingMissing fragmentsFlexible systemsOligomeric mixturesSAXS studies of biological macromoleculesRgMMVolumeShapeRigid body modellingMissing fragmen

27、tsFlexible systemsOligomeric mixturesATSASATSASsoftware packagesoftware packageSample preparation ExperimentData processingUnambiguous interpretationProblemsAutomationof the experiment and data analysisAutomated sample changersAt the X33 beamlineExperimental hutchX33 beamlineX33 beamlineRemote contr

28、ol of the experimentRemote control of the experimenthttp:/x33.embl-hamburg.de/Data reduction and analysis stepsRadial averagingRadiation damage checkNormalizationBuffer subtractionExtrapolation to infinite dilutionRg, molecular massDmax, p(r) , volumeAb initio shape determinationFurther steps depend on specimen type and available a priori informationWeb accessWorlds first remote SAXS experimentEMBL-Hamburgvia SkypeDmitriNanyang Technological University SingaporeRemote access interface with cameras displaying the sample cell and the SAXS robotMay, 26th, 2009, 12:30 CETThank you!

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号