机器人学基础机器人控制[1]

上传人:枫** 文档编号:567892925 上传时间:2024-07-22 格式:PPT 页数:58 大小:1.31MB
返回 下载 相关 举报
机器人学基础机器人控制[1]_第1页
第1页 / 共58页
机器人学基础机器人控制[1]_第2页
第2页 / 共58页
机器人学基础机器人控制[1]_第3页
第3页 / 共58页
机器人学基础机器人控制[1]_第4页
第4页 / 共58页
机器人学基础机器人控制[1]_第5页
第5页 / 共58页
点击查看更多>>
资源描述

《机器人学基础机器人控制[1]》由会员分享,可在线阅读,更多相关《机器人学基础机器人控制[1](58页珍藏版)》请在金锄头文库上搜索。

1、机器人学基础机器人学基础 Fundamentals of Robotics智能科学基础系列课程国家级教学团队智能科学基础系列课程国家级教学团队“机器人学机器人学”课程课程中南大学中南大学2010Fundamentals of Robotics1机器人学基础机器人控制1RobotHuboMade in ChinaTrained in USA2Fundamentals of Robotics机器人学基础机器人控制1HUBO RobotHero,Im Hubo. I am a very unique robot.The more we play the more I can do!I can pla

2、y games, dance and even sing to you!Lets be good friends!3Fundamentals of Robotics机器人学基础机器人控制1中南大学中南大学蔡自兴,谢蔡自兴,谢 斌斌zxcai, 2010机器人学基础机器人学基础第五章第五章 机器人控制机器人控制4Ch.5 Robot ControlFundamentals of RoboticsFundamentals of Robotics机器人学基础机器人控制1Chapter 5 Robot Control第五章第五章 机器人控制机器人控制5.1 Basic Principles of Ro

3、bot Control5.2 Position Control of Robots5.3 Hybrid Control of Force/Position of Robots 5.4 Intelligent Control of Robots5.5 Summary机器人学基础机器人控制1ExamplesRobot HuBoPUMA 560Watch a video of BigDog机器人学基础机器人控制1PUMA 560 Precise Universal Machine for Assembly An industrial robot机器人学基础机器人控制1Robot HuBoA mobi

4、le robotDesigned in USAMade in ChinaCan play games, dance and sing机器人学基础机器人控制1Watch vedio BigDogMade by Boston Dynamics Co. US.A military robot which has amazing mobility and adaptability.It can climb up 35 slopes, carry more than 40 kg equipment.Impression: Kinem. + Dynam. + ?机器人学基础机器人控制110Chapter

5、5 Robot Control5.1 Basic Principles of Robot Control 机器人的基本控制原则机器人的基本控制原则 The issue of robot control is closely related to robotic kinematics and dynamics. (how learn?). From the point view of control, The robotic system is a representative redundant, multi-variable and nonlinear control system in n

6、ature, and a complex coupling dynamic system. Every control task it self is a dynamical task. 机器人学基础机器人学基础机器人控制1115.1 Basic Principles of Robot ControlClassification of Controllers non-servo controlservo controlposition/speed feedback controlforce (torque) controlHybrid F-P controlsensor-based contr

7、olnonlinear control5.1.1 Basic Control Principles 5.1 Basic Principles of Robot Controladaptive controlhierarchical controloptimal controlfuzzy control neurocontrol other intelligent controls 机器人学基础机器人控制15.1.1 Basic Control Principles Industrial robot controller can be divided into single-joint (lin

8、k) controller and multi-joint (link) controller. Robot control depends on its head, that the development of the processor. Various control methods can be used according to the actual working conditions.5.1 Basic Principles of Robot Control12机器人学基础机器人控制15.1.1 Basic Control Principles13主要控制变量(Control

9、Variables) Control variables of joints of a manipulator5.1 机器人的基本控制原则机器人学基础机器人控制114控制层次 Control Levels Level 1: Level of AILevel 2 : Level of control model Level 3 : Level of servo system5.1.1 Basic Control Principles5.1 机器人的基本控制原则机器人学基础机器人控制15.1.1 Basic Control Principles Robot control is the contr

10、ol of bidirectional equation: 末端执行装置的状态是由任务轴的许多参数表示的,它是机器人运动模型矢量X的分量。要控制矢量X 随时间变化的情况,即 ,它表示末端执行装置在空间的实时位置。只有当关节移动时,X 才变化。用矢量 表示关节变量与受控量关系关节变量,即 至 。 各关节具有运动学模型C1至C6,这些模型构成关节矢量 ,并由各传动电动机的力矩矢量 经过变速机送到各个关节。在电流或电压矢量 提供的动力作用和微处理机的控制下,这些电动机产生力矩 。 机器人学基础机器人控制1控制层次 Control Levels 1st Grade: Artificial Intell

11、igence level2nd Grade: Control model level3rd Grade: Servo system-level5.1.1 Basic Control Principles5.1 Basic Principles of Robot Control16机器人学基础机器人控制15.1.2 Examples of Servo-control System 伺服控制系统举例伺服控制系统举例Servo driven system of hydraulic cylinder175.1 机器人的基本控制原则机器人学基础机器人控制1Electro-hydraulic servo

12、control system185.1.2 Examples of Servo-control System5.1 机器人的基本控制原则机器人学基础机器人控制119Manipulator consists of a series of links, whose dynamic characteristics are highly non-linear. We need to build up the mathematical model to control the motor-driven manipulator.Two assumptions in the designing of mod

13、el:The manipulator is an ideal rigid body without friction and gap.Only one degree of freedom for each link, either translation or rotation. 5.2 Position Control of Robot 机器人的位置控制机器人的位置控制5.2 Position Control of Robot机器人学基础机器人控制1205.2.1 Modeling of D.C Control System 直流传动系统的建模直流传动系统的建模nTransfer funct

14、ion and equivalent diagram 5.2 机器人的位置控制机器人学基础机器人控制1根据电力传动原理可求得下列传递函数:根据电力传动原理可求得下列传递函数:电动机的开环传递函数,见式5.16电枢控制直流电动机的传递函数(1),见式5.23 机器人学基础机器人控制122Speed regulation of DC motor5.2 机器人的位置控制5.2.1 Modeling of DC Control System机器人学基础机器人控制123Basic control structures5.2.2 Structure of Position Control 位置控制的基本结

15、构位置控制的基本结构5.2 机器人的位置控制机器人学基础机器人控制124Servo controlstructure of PUMA5.2.2 Structure of Position Control5.2 机器人的位置控制机器人学基础机器人控制125Servo control structure for PUMA robot5.2.2 Structure of Position Control5.2 Position Control of Robot机器人学基础机器人控制1Servo control structure for PUMA robot5.2.2 Structure of Po

16、sition Control5.2 Position Control of Robot26机器人学基础机器人控制15.2.3 Position Controller of Single Joint 单关节位置控制器单关节位置控制器nStructure of Position control system5.2 Position Control of Robot27机器人学基础机器人控制1Transfer function of a single-joint controller5.2.3 Position Controller of Single Joint5.2 Position Contr

17、ol of Robot28机器人学基础机器人控制15.2.3 Position Controller of Single Joint5.2 Position Control of Robot29机器人学基础机器人控制1Determinate Parameters and the Steady-State Error (SSE) Steady-State Error (SSE)5.2.3 Position Controller of Single Joint5.2 Position Control of Robot30机器人学基础机器人控制15.2.4 Position Controller w

18、ith Multi-Joint 多关节位置控制器多关节位置控制器Lagrangian dynamic equation5.2 Position Control of Robot31机器人学基础机器人控制15.2.4 Position Controller with Multi-Joint5.2 Position Control of Robot32机器人学基础机器人控制15.2.4 Position Controller with Multi-Joint 多关节位置控制器多关节位置控制器33Compensation of Coupled Inertia 耦合惯量补偿5.2 Position C

19、ontrol of Robot机器人学基础机器人控制15.3 Hybrid Position/Force Control of Robots 机器人的力和位置混合控制5.3.1 Schemes of Hybrid Position/Force Control 力和位置混合控制方案力和位置混合控制方案Active Stiffness Control主动刚性控制 如果希望在某个方向上遇到实际约束,那么这个方向的刚性应当降低,以保证有较低的结构应力;反之,在某些不希望碰到实际约束的方向上,则应加大刚性,这样可使机械手紧紧跟随期望轨迹。于是,就能够通过改变刚性来适应变化的作业要求。5.3 Hybrid

20、 Position/Force Control of Robot34机器人学基础机器人控制15.3.1 Schemes of Hybrid ControlRaibert-Craig Position / Force Hybrid Controller雷伯特雷伯特- -克雷格位置克雷格位置/ /力混合控制器力混合控制器5.3 Hybrid Position/Force Control of Robot35机器人学基础机器人控制1Raibert-Craig Position / Force Hybrid Controller对R-C控制器进行如下改进:在混合控制器中考虑机械手的动态影响,并对机械手

21、所受重力及哥氏力和向心力进行补偿; 考虑力控制系统的欠阻尼特性,在力控制回路中,加入阻尼反馈,以消弱振荡因素。引入加速度前馈,以满足作业任务对加速度的要求,也可使速度平滑过渡。改进后的R-C力/位置混合控制系统结构图如图5.17所示。5.3 Hybrid Position/Force Control of Robot36机器人学基础机器人控制15.3 Hybrid Position/Force Control of RobotRaibert-Craig Position / Force Hybrid Controller37机器人学基础机器人控制15.3.1 Schemes of Hybrid

22、 Control操作空间力和位置混合控制系统5.3 Hybrid Position/Force Control of Robot38机器人学基础机器人控制15.3.2 Control Rule Synthesis of Hybrid Sys. 力和位置混合控制系统控制规律的综合力和位置混合控制系统控制规律的综合位置控制规律位置控制规律 Position Control Equation of the system controller:Dynamic Equation of a closed-loop system:Let5.3 Hybrid Position/Force Control of

23、 Robot39机器人学基础机器人控制1力控制规律力控制规律 Force Control令图5.17中的位置适从选择矩阵 S=0,控制末端在基坐标系z0方向上受到反作用力。设约束表面为刚体,末端受力如图5.19所示,那么对三连杆机械手进行力控制时有力控制选择矩阵:5.3.2 Control Rule Synthesis of Hybrid Sys.5.3 Hybrid Position/Force Control of Robot40机器人学基础机器人控制1力控制规律力控制规律 Force ControlDynamic Equation of a closed-loop system:Resu

24、lts show that on the force control joint 1 does not work, joints 2 and 3 are effective.5.3 Hybrid Position/Force Control of Robot41机器人学基础机器人控制1力和位置混合控制规律力和位置混合控制规律 Hybrid Control设约束坐标系与基坐标系重合。如果要求作业在基坐标系的z0方向进行力控制,在某个与x0y0平面平行的约束面上进行位置控制,则适从选择矩阵为位置: 力: 5.3.2 Control Rule Synthesis of Hybrid Sys.5.3

25、Hybrid Position/Force Control of Robot42机器人学基础机器人控制15.4 Intelligent Control of Robots 机器人的智能控制机器人的智能控制5.4.1 Classification of Intelligent Control 智能控制系统的分类智能控制系统的分类 递阶控制(Hierarchical Control) 专家控制(Expert Control) 模糊控制(Fuzzy Control) 学习控制(Learning Control) 神经控制(Neuro Control) 进化控制(Evolution Control)

26、5.4 Intelligent Control of Robot43机器人学基础机器人控制15.4 Intelligent Control of Robots 机器人的智能控制机器人的智能控制5.4.1 Classification of Intelligent Control 智能控制系统的分类智能控制系统的分类 递阶控制系统(Hierarchical Control System) 组织级代表控制系统的主导思想,并由人工智能起控制作用。协调级是上(组织)级和下(执行)级间的接口,承上启下,并由人工智能和运筹学共同作用。执行级是递阶控制的底层,要求具有较高的精度和较低的智能,它按控制论进行控

27、制,对相关过程执行适当的控制作用。445.4 Intelligent Control of Robot机器人学基础机器人控制1Hierarchical Control System Structure of a hierarchical control systemThe control intelligence is hierarchically distributed according to the principle of increasing precision with decreasing intelligence (IPDI).5.4 Intelligent Control o

28、f Robot45机器人学基础机器人控制1hierarchical control system of PUMA 600 with vision feedback.Hierarchically Control System5.4 Intelligent Control of Robot46机器人学基础机器人控制15.4.1 Classification of Intel. Control专家控制系统专家控制系统(Expert Control System)Almost all of the expert control system (controller) contains the know

29、ledge base(知识库), reasoning engineer (推理机), rule set (控制规则集) and/or control algorithm.5.4 Intelligent Control of Robot47机器人学基础机器人控制15.4.1 Classification of Intel. Control模糊控制系统模糊控制系统(Fuzzy Control System)A new mechanism of control law of knowledge-based (rule-based) and even language-description.An i

30、mproved alternative method to non-linear control.5.4 Intelligent Control of Robot48机器人学基础机器人控制15.4.1 Classification of Intel. Control学习控制系统学习控制系统(Learning Control System)Four main functions of learning control: search, recognition, memory and reasoning.5.4 Intelligent Control of RobotOn-line learnin

31、g control systemoff-line learning control system49机器人学基础机器人控制15.4.1 Classification of Intel. Control神经控制系统神经控制系统(Neuro-Control System)Control system based on Artificial Neural Network (ANN-based control), abbreviate as neural control or NN control. 5.4 Intelligent Control of RobotSupervised neural c

32、ontroller structure50机器人学基础机器人控制1515.4.1 Classification of Intel. Control进化控制系统进化控制系统(Evolution Control System)Evolution and feedback are two basic regulatory mechanisms complementary to each other. Combination of the two mechanisms produces a new intelligent control method - evolutionary control.Ev

33、olutionary control simulate the evolution mechanisms of biosphere, improve the autonomy, creativity and learning ability of the system.5.4 Intelligent Control of Robot机器人学基础机器人控制15.4 .2 Adaptive Fuzzy Control of Robots 机器人的自适应模糊控制机器人的自适应模糊控制Fuzzy control is the most widely used intelligent control m

34、ethod:The PID fuzzy control, self-organizing fuzzy control, self-tuning fuzzy control, self-learning fuzzy control, expert fuzzy control, etc.5.4 Intelligent Control of Robot52机器人学基础机器人控制15.4.3 Neurocontrol of Multi-fingered Hands 多指灵巧手的神经控制Multi-fingered hand is also called multi-joint robot, gener

35、ally made of a palm and 3 to 5 fingers, while each finger have 3 to 4 joints.Multi-fingered hand is smaller, with more degrees of freedom, and more flexible than normal robot.Multi-fingered hand get much stronger non-linear characteristic than ordinary robot.5.4 Intelligent Control of Robot53机器人学基础机

36、器人控制15.4.3 Neurocontrol of Multi-fingered HandController design based on neural network Hardware of control systemSoftware of control systemThe host software written in C language, servo controller software written in assembly language.5.4 Intelligent Control of Robot54机器人学基础机器人控制15.4.3 Neurocontrol

37、 of Multi-fingered Hand5.4 Intelligent Control of Robot55机器人学基础机器人控制15.5 Summary 小结Basic principles of robot controlClassification of robot controllerThe relationship between various control variables and the main control hierarchyPosition controlJoint space control structureCartesian space control

38、structurePUMA robot servo control structureSingle-joint position controller and multi-joint position controllerHybrid Force / Position ControlActive stiffness controlR-C ControlSynthesis problem of Hybrid control system5.5 Summary56机器人学基础机器人控制1Intelligent ControlHierarchical ControlExpert ControlFuzzy ControlLearning ControlNeural ControlEvolution ControlAdaptive Fuzzy Control of RobotNeural Control of multi-fingered hands5.5 Summary5.5 Summary57机器人学基础机器人控制1Thank youFor Attention!Fundamentals of Robotics58机器人学基础机器人控制1

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号