2022年物理3-2知识点总结

上传人:枫** 文档编号:567259422 上传时间:2024-07-19 格式:PDF 页数:18 大小:92.33KB
返回 下载 相关 举报
2022年物理3-2知识点总结_第1页
第1页 / 共18页
2022年物理3-2知识点总结_第2页
第2页 / 共18页
2022年物理3-2知识点总结_第3页
第3页 / 共18页
2022年物理3-2知识点总结_第4页
第4页 / 共18页
2022年物理3-2知识点总结_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《2022年物理3-2知识点总结》由会员分享,可在线阅读,更多相关《2022年物理3-2知识点总结(18页珍藏版)》请在金锄头文库上搜索。

1、知识点大全选修 3-2 知识点56电磁感应现象只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。这种利用磁场产生电流的现象叫电磁感应,是1831 年法拉第发现的。57感应电流的产生条件1、 回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中( 是 B与 S的夹角) 看,磁通量的变化可由面积的变化引起;可由磁感应强度B的变化引起;可由B与 S的夹角的变化引起;也可由B 、S、 中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应

2、电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:导体在磁场里做切割磁感线运动时,导体内就产生感应电动势;穿过线圈的磁量发生变化时,线圈里就产生感应电动势。如果导体是闭合电路的一部分,或者线圈是闭合的,就产生感应电流。从本质上讲,上述两种说法是一致的,所以产生感应电流的条件可归结为:穿过闭合电路的磁通量发生变化。58法拉第电磁感应定律楞次定律电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。当长L 的导线,以速度,在匀强磁场B中,垂直切割磁感线,其两端间感应电动势的大小为。如图所示。设产生的感应电流强度为I ,MN间电动势为,则

3、MN 受向左的安培力,要保持 MN以 匀速向右运动,所施外力,当行进位移为S时,外力功。 为所用时间。而在时间内,电流做功,据能量转化关系,则。 ,M点电势高, N点电势低。此公式使用条件是方向相互垂直,如不垂直,则向垂直方向作投影。, 电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比法拉第电磁感应定律。如上图中分析所用电路图,在回路中面积变化,而回路跌磁通变化量,又知。如果回路是匝串联,则。公式。注意 : 1)该式普遍适用于求平均感应电动势。2) 只与穿过电路的磁通量的变化率有关 , 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、 电路的结构与材料等因素无关。公式二: 。要注意

4、: 1) 该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(lB )。2) 为 v 与 B 的夹角。 l 为导体切割磁感线的有效长度( 即 l 为导体实际长度在垂直于 B方向上的投影) 。公式三 : 。注意 : 1) 该公式由法拉第电磁感应定律推出。适用于自感现象。 2) 与电流的变化率成正比。公式中涉及到磁通量的变化量的计算 , 对 的计算 , 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变 , 磁感应强度发生变化, 由 , 此时 , 此式中的叫磁感应强度的变化率 , 若 是恒定的 , 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2) 磁感应强度B 不变 , 回路与

5、磁场垂直的面积发生变化, 则 , 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。严格区别磁通量 , 磁通量的变化量磁通量的变化率 , 磁通量 , 表示穿过研究平面的磁感线的条数, 磁通量的变化量 , 表示磁通量变化的多少, 磁通量的变化率表示磁通量变化的快慢, , 大, 不一定大 ; 大, 也不一定大 , 它们的区别类似于力学中的v, 的区别 , 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 18 页知识点大全另外 I、 也有类似的区别。公式一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同

6、的情况, 如何求感应电动势?如图1 所示 , 一长为 l 的导体杆 AC绕 A点在纸面内以角速度匀速转动 , 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B, 求 AC产生的感应电动势, 显然 , AC 各部分切割磁感线的速度不相等, , 且 AC上各点的线速度大小与半径成正比, 所以 AC切割的速度可用其平均切割速度, 即 , 故 。当长为L 的导线,以其一端为轴,在垂直匀强磁场B的平面内,以角速度匀速转动时,其两端感应电动势为。如图所示, AO导线长 L,以 O端为轴,以角速度匀速转动一周,所用时间,描过面积 , (认为面积变化由0 增到)则磁通变化。在 AO间产生的感应电动势且用

7、右手定则制定A端电势高, O端电势低。面积为S的纸圈, 共 匝,在匀强磁场B中,以角速度匀速转坳, 其转轴与磁场方向垂直,则当线圈平面与磁场方向平行时,线圈两端有最大有感应电动势。如图所示,设线框长为L,宽为 d,以转到图示位置时,边垂直磁场方向向纸外运动,切割磁感线,速度为(圆运动半径为宽边d 的一半)产生感应电动势, 端电势高于端电势。边垂直磁场方向切割磁感线向纸里运动,同理产生感应电动热势。 端电势高于端电势。边,边不切割,不产生感应电动势, 两端等电势,则输出端M N电动势为。如果线圈匝,则,M端电势高, N端电势低。参照俯示图,这位置由于线圈长边是垂直切割磁感线,所以有感应电动势最大

8、值,如从图示位置转过一个角度,则圆运动线速度,在垂直磁场方向的分量应为,则此时线圈的产生感应电动势的瞬时值即作最大值 . 即作最大值方向的投影,( 是线圈平面与磁场方向的夹角)。当线圈平面垂直磁场方向时,线速度方向与磁场方向平行,不切割磁感线, 感应电动势为零。总结:计算感应电动势公式:( 是线圈平面与磁场方向的夹角)。注意:公式中字母的含义,公式的适用条件及使用图景。区分感应电量与感应电流, 回路中发生磁通变化时, 由于感应电场的作用使电荷发生定向移动而形成感应电流, 在 内迁移的电量 ( 感应电量 ) 为, 仅由回路电阻和磁通量的变化量决定, 与发生磁通量变化的时间无关。因此, 当用一磁棒

9、先后两次从同一处用不同速度插至线圈中同一位置时, 线圈里聚积的感应电量相等, 但快插与慢插时产生的感应电动势、感应电流不同, 外力做功也不同。楞次定律: 1、1834 年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。即磁通量变化感应电流感应电流磁场磁通量变化。 2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 18 页知识点大全楞次定律是判断感应

10、电动势方向的定律,但它是通过感应电流方向来表述的。按照这个定律,感应电流只能采取这样一个方向,在这个方向下的感应电流所产生的磁场一定是阻碍引起这个感应电流的那个变化的磁通量的变化。我们把“引起感应电流的那个变化的磁通量”叫做“原磁道”。因此楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。从这里可以看出,正确理解感应电流的磁场和原磁通的关系是理解楞次定律的关键。要注意理解“阻碍”和“变化”这四个字,不能把“阻碍”理解为“阻止”

11、,原磁通如果增加,感应电流的磁场只能阻碍它的增加,而不能阻止它的增加,而原磁通还是要增加的。更不能感应电流的“磁场”阻碍“原磁通”,尤其不能把阻碍理解为感应电流的磁场和原磁道方向相反。正确的理解应该是:通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到 “阻碍”原磁通的“变化”即减或增。楞次定律所反映提这样一个物理过程:原磁通变化时(原变) ,产生感应电流(I 感) ,这是属于电磁感应的条件问题;感应电流一经产生就在其周围空间激发磁场 ( 感) ,这就是电流的磁效应问题;而且 I 感的方向就决定了感的方向 (用安培右手螺旋定则判定) ;感阻碍原的变化这正是楞次定律所解决的问题。这样一个复

12、杂的过程,可以用图表理顺如下:楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍) 产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:(1)阻碍原磁通的变化(原始表述);(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;(3)使线圈面积有扩大或缩小的趋势;(4)阻碍原电流的变化(自感现象)。利用上

13、述规律分析问题可独辟蹊径,达到快速准确的效果。如图 1 所示,在 O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。若按常规方法,应先由楞次定律判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。若直接从感应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。因此环将向右摆动。显然,用第二种方法判断更简捷。应用楞次定律判断感应电流方向的具体步骤:(1)查明原磁场的方向及磁通量的变化情况;(2)根据楞次定律中的“阻碍”确定感应电流产

14、生的磁场方向;(3)由感应电流产生的磁场方向用安培表判断出感应电流的方向。 3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。如图2 所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。要注意左手定则与右手定则应用的区别,两个定则的应用可简单总结为:“因电而

15、动”用左手,“因动而电”用右手,因果关系不可混淆。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 18 页知识点大全59互感自感涡流互感:由于线圈A中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B中激发了感应电动势。这种现象叫互感。自感现象是指由于导体本身的电流发生变化而产生的电磁感应现象。所产生的感应电动势叫做自感电动势。自感系数简称自感或电感, 它是反映线圈特性的物理量。线圈越长, 单位长度上的匝数越多, 截面积越大 , 它的自感系数就越大。另外, 有铁心的线圈的自感系数比没有铁心时要大得多。自感现象分通电自感和断电自感两

16、种, 其中断电自感中 “小灯泡在熄灭之前是否要闪亮一下”的问题 , 如图 2 所示 , 原来电路闭合处于稳定状态, L与 并联 , 其电流分别为 , 方向都是从左到右。在断开S 的瞬间 , 灯 A 中原来的从左向右的电流立即消失 , 但是灯A与线圈L构成一闭合回路, 由于 L 的自感作用 , 其中的电流不会立即消失, 而是在回路中逐断减弱维持暂短的时间, 在这个时间内灯A中有从右向左的电流通过 , 此时通过灯A的电流是从开始减弱的 , 如果原来 , 则在灯 A熄灭之前要闪亮一下; 如果原来 , 则灯 A是逐断熄灭不再闪亮一下。原来哪一个大 , 要由 L 的直流电阻和 A的电阻的大小来决定, 如

17、果 , 如果。 2、由于线圈(导体)本身电流的变化而产生的电磁感应现象叫自感现象。在自感现象中产生感应电动势叫自感电动势。由上例分析可知:自感电动势总量阻碍线圈(导体)中原电流的变化。 3、自感电动势的大小跟电流变化率成正比。 L是线圈的自感系数,是线圈自身性质,线圈越长,单位长度上的匝数越多,截面积越大,有铁芯则线圈的自感系数L 越大。单位是亨利(H) 。如是线圈的电流每秒钟变化1A,在线圈可以产生1V 的自感电动势, 则线圈的自感系数为 1H 。还有毫亨(mH ) ,微亨( H) 。涡流及其应用1变压器在工作时,除了在原、 副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。一般

18、来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流2应用:(1)新型炉灶电磁炉。(2)金属探测器:飞机场、火车站安全检查、扫雷、探矿。60交变电流描述交变电流的物理量和图象一、交流电的产生及变化规律:(1)产生:强度和方向都随时间作周期性变化的电流叫交流电。矩形线圈在匀强磁场中,绕垂直于匀强磁场的线圈的对称轴作匀速转动时,如图 51 所示,产生正弦(或余弦)交流电动势。当外电路闭合时形成正弦(或余弦)交流电流。图 51 (2)变化规律:(1)中性面:与磁力线垂直的平面叫中性面。线圈平面位于中性面位置时,如图52(A)所示,穿过线圈的磁通量最大,但磁通量变化率为

19、零。因此,感应电动势为零。图 52 当线圈平面匀速转到垂直于中性面的位置时(即线圈平面与磁力线平行时)如图 52(C)所示,穿过线圈的磁通量虽然为零,但线圈平面内磁通量变化率最大。因此,感应电精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 18 页知识点大全动势值最大。(伏)(N为匝数)(2)感应电动势瞬时值表达式:若从中性面开始,感应电动势的瞬时值表达式:(伏)如图52(B)所示。感应电流瞬时值表达式:(安)若从线圈平面与磁力线平行开始计时,则感应电动势瞬时值表达式为:(伏)如图52(D)所示。感应电流瞬时值表达式:(安)二、表征交流

20、电的物理量:(1)瞬时值、最大值和有效值:交流电在任一时刻的值叫瞬时值。瞬时值中最大的值叫最大值又称峰值。交流电的有效值是根据电流的热效应规定的:让交流电和恒定直流分别通过同样阻值的电阻,如果二者热效应相等(即在相同时间内产生相等的热量)则此等效的直流电压,电流值叫做该交流电的电压,电流有效值。正弦(或余弦)交流电电动势的有效值和最大值的关系为:交流电压有效值;交流电流有效值。注意:通常交流电表测出的值就是交流电的有效值。用电器上标明的额定值等都是指有效值。用电器上说明的耐压值是指最大值。(2)周期、频率和角频率交流电完成一次周期性变化所需的时间叫周期。以T表示,单位是秒。交流电在1 秒内完成

21、周期性变化的次数叫频率。以f 表示,单位是赫兹。周期和频率互为倒数,即。我国市电频率为50 赫兹,周期为0.02 秒。角频率:单位:弧度 / 秒交流电的图象:图象如图53 所示。图象如图54 所示。61。正弦交变电流的函数表达式u=Umsint i=Imsin t 62电感和电容对交变电流的影响电感对交变电流有阻碍作用,阻碍作用大小用感抗表示。低频扼流圈,线圈的自感系数很大,作用是“通直流,阻交流”;高频扼流圈,线圈的自感系数很小,作用是“通低频,阻高频”电容对交变电流有阻碍作用,阻碍作用大小用容抗表示精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第

22、 5 页,共 18 页知识点大全耦合电容,容量较大,隔直流、通交流高频旁路电容,容量很小,隔直流、阻低频、通高频63变压器变压器是可以用来改变交流电压和电流的大小的设备。理想变压器的效率为1,即输入功率等于输出功率。对于原、 副线圈各一组的变压器来说(如图 56) ,原、副线圈上的电压与它们的匝数成正。即因为有,因而通过原、副线圈的电流强度与它们的匝数成反比。即注意: 1理想变压器各物理量的决定因素输入电压U1决定输出电压U2,输出电流 I2 决定输入电流I1 , 输入功率随输出功率的变化而变化直到达到变压器的最大功率(负载电阻减小,输入功率增大;负载电阻增大,输入功率减小) 。2一个原线圈多

23、个副线圈的理想变压器的电压、电流的关系U1:U2:U3: =n1:n2:n3: I1n1=I2n2+I3n3+因为,即,所以变压器中高压线圈电流小,绕制的导线较细,低电压的线圈电流大,绕制的导线较粗。上述各公式中的I 、U、P均指有效值,不能用瞬时值。(3)电压互感器和电流互感器电压互感器是将高电压变为低电压,故其原线圈并联在待测高压电路中;电流互感器是将大电流变为小电流,故其原线圈串联在待测的高电流电路中。(二)解决变压器问题的常用方法思路 1 电压思路。变压器原、副线圈的电压之比为U1/U2=n1/n2 ;当变压器有多个副绕组时U1/n1=U2/n2=U3/n3= 思路 2 功率思路。理想

24、变压器的输入、输出功率为P入=P出,即 P1=P2 ;当变压器有多个副绕组时 P1=P2+P3+ 思路 3 电流思路。由I=P/U 知,对只有一个副绕组的变压器有I1/I2=n2/n1;当变压器有多个副绕组时n1I1=n2I2+n3I3+思路 4 (变压器动态问题)制约思路。(1)电压制约:当变压器原、副线圈的匝数比(n1/n2 )一定时,输出电压U2由输入电压决定,即 U2=n2U1/n1,可简述为“原制约副”. (2)电流制约:当变压器原、副线圈的匝数比(n1/n2 )一定,且输入电压U1确定时,原线圈中的电流I1 由副线圈中的输出电流I2 决定,即I1=n2I2/n1,可简述为“副制约原

25、”. (3)负载制约: 变压器副线圈中的功率P2 由用户负载决定,P2=P负 1+P负 2+;变压器副线圈中的电流I2 由用户负载及电压U2确定, I2=P2/U2 ;总功率P总=P线+P2. 动态分析问题的思路程序可表示为:U1 P1 思路 5 原理思路。变压器原线圈中磁通量发生变化,铁芯中/ t 相等;当遇到“”型变压器时有1/ t= 2/ t+ 3/ t ,此式适用于交流电或电压(电流)变化的直流电,但不适用于稳压或恒定电流的情况. 64电能的输送由于送电的导线有电阻,远距离送电时,线路上损失电能较多。在输送的电功率和送电导线电阻一定的条件下,提高送电电压, 减小送电电流强度可精选学习资

26、料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 18 页知识点大全以达到减少线路上电能损失的目的。线路中电流强度I 和损失电功率计算式如下:注意:送电导线上损失的电功率,不能用求,因为不是全部降落在导线上。65传感器的及其工作原理有一些元件它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断。我们把这种元件叫做传感器。它的优点是: 把非电学量转换为电学量以后,就可以很方便地进行测量、传输、 处理和控制了。光敏电阻在光照射下电阻变化的原因:有些物质,例如硫化镉,是一种半导体材料,无

27、光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好。光照越强,光敏电阻阻值越小。金属导体的电阻随温度的升高而增大,热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显。金属热电阻与热敏电阻都能够把温度这个热学量转换为电阻这个电学量,金属热电阻的化学稳定性好,测温范围大,但灵敏度较差。66传感器的应用1光敏电阻2热敏电阻和金属热电阻3电容式位移传感器4力传感器将力信号转化为电流信号的元件。5霍尔元件霍尔元件是将电磁感应这个磁学量转化为电压这个电学量的元件。传感器执行机构计算机系统显示器外部磁场使运动的载流子受到洛伦兹力,在导体板的一侧聚集,在导体板的另一侧会出现多余的

28、另一种电荷,从而形成横向电场;横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板左右两例会形成稳定的电压,被称为霍尔电势差或霍尔电压1传感器应用的一般模式2传感器应用:力传感器的应用电子秤声传感器的应用话筒温度传感器的应用电熨斗、电饭锅、测温仪光传感器的应用鼠标器、火灾报警器传感器的应用实例:1光控开关2温度报警器选修 3-4 知识点6781 为选修 3-3 知识点(本地区不选,略)82简谐运动简谐运动的表达式和图象1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。 机械振动产生的条件是: (1)回复力不为零。 (2)阻力很小。

29、使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 18 页知识点大全2、简谐振动:在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解:(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。3、描述振动的物理量,研究振动除了要用到位移、速度、 加速

30、度、 动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。(1)位移 x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。(2)振幅 A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。(3)周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。(4)频率 f :振动物体单位时间内完成全振动的次数。(5)角频率:角频率也叫角速度,即圆周运动物体单位

31、时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。周期、频率、角频率的关系是:。(6)相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。4、研究简谐振动规律的几个思路:(1)用动力学方法研究,受力特征:回复力F = Kx ;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。(2)用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律

32、的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。(3)用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。(4)从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。5、简谐运动的表达式振幅 A,周期 T,相位,初相6、简谐运动图象描述振动的物理量1直接描述量:振幅 A;周期T;任意时刻的位移t 。2间接描述量:x-t图线上一点的切线的斜率等于V。3从振动图象中的x 分析有关物理量(v ,a,F) 简谐运动的特点是周期性。在回复力的作用下,物体的运动在空间上有往复性,即在平衡位置附近做往复的变加速(或变减速 ) 运

33、动;在时间上有周期性,即每经过一定时间,运动就要重复一次。我们能否利用振动图象来判断质点x,F,v,a 的变化,它们变化的周期虽相等,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 18 页知识点大全但变化步调不同,只有真正理解振动图象的物理意义,才能进一步判断质点的运动情况。小结: 1. 简谐运动的图象是正弦或余弦曲线,与运动轨迹不同。2简谐运动图象反应了物体位移随时间变化的关系。3根据简谐运动图象可以知道物体的振幅、周期、任一时刻的位移。83单摆的周期与摆长的关系(实验、探究)单摆周期公式上述公式是高考要考查的重点内容之一。对周期公

34、式的理解和应用注意以下几个问题:简谐振动物体的周期和频率是由振动系统本身的条件决定的。单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。例如图 1 中 ,三根等长的绳L1、L2、L3 共同系住一个密度均匀的小球m ,球直径为d,L2、L3 与天花板的夹角a 30 。若摆球在纸面内作小角度的左右摆动,则摆的圆弧的圆心在O1外,故等效摆长为,周期 T1=2 ;若摆球做垂直纸面的小角度摆动,叫摆动圆弧的圆心在 O处,故等效摆长为,周期 T2= . 单摆周期公式中的g,由单摆所在的空间位置决定,还由单摆系统的运动状态决定。所以 g也叫等效重力加速度。由 可知, 地球表面不同位置、

35、不同高度, 不同星球表面g 值都不相同, 因此应求出单摆所在地的等效g值代入公式, 即 g 不一定等于9.8m/s2 。单摆系统运动状态不同g 值也不相同。例如单摆在向上加速发射的航天飞机内,设加速度为a,此时摆球处于超重状态,沿圆弧切线的回复力变大,摆球质量不变, 则重力加速度等效值g = g + a。再比如在轨道上运行的航天飞机内的单摆、摆球完全失重,回复力为零,则重力加速度等效值 g = 0,周期无穷大,即单摆不摆动了。g 还由单摆所处的物理环境决定。如带小电球做成的单摆在竖直方向的匀强电场中,回复力应是重力和竖直的电场合力在圆弧切向方向的分力,所以也有g的问题。一般情况下g值等于摆球静

36、止在平衡位置时,摆线张力与摆球质量的比值。84受迫振动和共振物体在周期性外力作用下的振动叫受迫振动。受迫振动的规律是:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。共振是受迫振动的一种特殊情况。85机械波横波和纵波横波的图象机械波:机械振动在介质中的传播过程叫机械波,机械波产生的条件有两个:一是要有做机械振动的物体作为波源,二是要有能够传播机械振动的介质。横波和纵波:质点的振动方向与波的传播方向垂直的叫横波。质点的振动方向与波的传播方向在同一直线上的叫纵波。气体、液体、固体都能传播纵波,但气体和液体不能传播横

37、波,声波在空气中是纵波,声波的频率从20 到 2 万赫兹。机械波的特点:(1)每一质点都以它的平衡位置为中心做简振振动;后一质点的振动总是落后于带动它的前一质点的振动。(2)波只是传播运动形式(振动)和振动能量,介质并不随波迁移。横波的图象用横坐标x 表示在波的传播方向上各质点的平衡位置,纵坐标y 表示某一时刻各质点偏离平衡位置的位移。简谐波的图象是正弦曲线,也叫正弦波简谐波的波形曲线与质点的振动图象都是正弦曲线,但他们的意义是不同的。波形曲线表示介质中的“各个质点”在“某一时刻”的位移,振动图象则表示介质中“某个质点”在“各精选学习资料 - - - - - - - - - 名师归纳总结 -

38、- - - - - -第 9 页,共 18 页知识点大全个时刻”的位移。86波长、波速和频率(周期)的关系描述机械波的物理量(1)波长:两个相邻的、 在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。振动在一个周期内在介质中传播的距离等于波长。(2)频率 f :波的频率由波源决定,在任何介质中频率保持不变。(3)波速 v:单位时间内振动向外传播的距离。波速的大小由介质决定。波速与波长和频率的关系:,87波的反射和折射波的干涉和衍射1. 惠更斯原理:介质中任一波面上的各点,都可以看作发射子波的波源,而后任意时刻,这些子波在波前进方向的包络面便是新的波面。2. 根据惠更斯原理,只要知道某一

39、时刻的波阵面,就可以确定下一时刻的波阵面。波的反射1. 波遇到障碍物会返回来继续传播,这种现象叫做波的反射2. 反射规律?反射定律:入射线、法线、反射线在同一平面内,入射线与反射线分居法线两侧,反射角等于入射角。?入射角( i )和反射角( i ) :入射波的波线与平面法线的夹角i 叫做入射角反射波的波线与平面法线的夹角i 叫做反射角?反射波的波长、频率、波速都跟入射波相同?波遇到两种介质界面时,总存在反射波的折射1. 波的折射:波从一种介质进入另一种介质时,波的传播方向发生了改变的现象叫做波的折射2. 折射规律:(1). 折射角( r ) :折射波的波线与两介质界面法线的夹角r 叫做折射角(

40、2).折射定律:入射线、法线、折射线在同一平面内,入射线与折射线分居法线两侧入射角的正弦跟折射角的正弦之比等于波在第一种介质中的速度跟波在第二种介质中的速度之比:?当入射速度大于折射速度时,折射角折向法线. ?当入射速度小于折射速度时,折射角折离法线. ?当垂直界面入射时,传播方向不改变,属折射中的特例?在波的折射中,波的频率不改变,波速和波长都发生改变?波发生折射的原因:是波在不同介质中的速度不同波的干涉和衍射衍射:波绕过障碍物或小孔继续传播的现象。产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长相差不多。干涉: 频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加

41、强和振动减弱区域相互间隔的现象。产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。稳定的干涉现象中,振动加强区和减弱区的空间位置是不变的,加强区的振幅等于两列波振幅之和,减弱区振幅等于两列波振幅之差。判断加强与减弱区域的方法一般有两种:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 18 页知识点大全一是画峰谷波形图,峰峰或谷谷相遇增强,峰谷相遇减弱。二是相干波源振动相同时,某点到二波源程波差是波长整数倍时振动增强,是半波长奇数倍时振动减弱。干涉和衍射是波所特有的现象。88多普勒效应1. 多普勒效应:由于波源和观察者之间有相对运动

42、,使观察者感到频率变化的现象叫做多普勒效应。他是奥地利物理学家多普勒在1842 年发现的。2. 多普勒效应的成因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。3. 多普勒效应是波动过程共有的特征,不仅机械波,电磁波和光波也会发生多普勒效应。4. 多普勒效应的应用: 现代医学上使用的胎心检测器、血流测定仪等有许多都是根据这种原理制成。根据汽笛声判断火车的运动方向和快慢,以炮弹飞行的尖叫声判断炮弹的飞行方向等。 红移现象:

43、在 20 世纪初, 科学家们发现许多星系的谱线有“红衣现象” ,所谓“红衣现象”,就是整个光谱结构向光谱红色的一端偏移,这种现象可以用多普勒效应加以解释:由于星系远离我们运动,接收到的星光的频率变小,谱线就向频率变小(即波长变大)的红端移动。科学家从红移的大小还可以算出这种远离运动的速度。这种现象,是证明宇宙在膨胀的一个有力证据。89电磁波电磁波的传播一、麦克斯韦电磁场理论1、电磁场理论的核心之一:变化的磁场产生电场在变化的磁场中所产生的电场的电场线是闭合的 ( 涡旋电场 ) 理解 : (1) 均匀变化的磁场产生稳定电场 (2) 非均匀变化的磁场产生变化电场2、电磁场理论的核心之二:变化的电场

44、产生磁场麦克斯韦假设: 变化的电场就像导线中的电流一样, 会在空间产生磁场, 即变化的电场产生磁场理解 : (1) 均匀变化的电场产生稳定磁场 (2) 非均匀变化的电场产生变化磁场规律总结1、麦克斯韦电磁场理论的理解: 恒定的电场不产生磁场恒定的磁场不产生电场均匀变化的电场在周围空间产生恒定的磁场均匀变化的磁场在周围空间产生恒定的电场振荡电场产生同频率的振荡磁场振荡磁场产生同频率的振荡电场2、电场和磁场的变化关系非均匀变化磁场激发均匀变化激发精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 18 页知识点大全稳定磁场不再激发若非均匀变化

45、激发均匀变化激发非均匀变化二、电磁波1、电磁场:如果在空间某区域中有周期性变化的电场, 那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场, 变化的电场和变化的磁场是相互联系着的, 形成不可分割的统一体, 这就是电磁场这个过程可以用下图表达。2、电磁波:电磁场由发生区域向远处的传播就是电磁波. 3、电磁波的特点:(1) 电磁波是横波 , 电场强度E 和磁感应强度 B 按正弦规律变化, 二者相互垂直 , 均与波的传播方向垂直(2) 电磁波可以在真空中传播, 速度和光速相同. v= f (3) 电磁波具有波的特性三、赫兹的电火花赫兹观察到了电

46、磁波的反射, 折射 ,干涉 , 偏振和衍射等现象. ,他还测量出电磁波和光有相同的速度 . 这样赫兹证实了麦克斯韦关于光的电磁理论,赫兹在人类历史上首先捕捉到了电磁波。90电磁振荡电磁波的发射和接收LC回路振荡电流的产生先给电容器充电,把能以电场能的形式储存在电容器中。(1)闭合电路,电容器C通过电感线圈L 开始放电。由于线圈中产生的自感电动势的阻碍作用。放电开始瞬时电路中电流为零,磁场能为零,极板上电荷量最大。随后,电路中电流加大, 磁场能加大, 电场能减少 , 直到电容器C两端电压为零。放电结束, 电流达到最大、磁场能最多。(2)由于电感线圈L 中自感电动势的阻碍作用电流不会立即消失,保持

47、原来电流方向,对电容器反方向充电,磁场能减少,电场能增多。充电流由大到小,充电结束时,电流为零。接着电容器又开始放电,重复(1) 、 (2)过程,但电流方向与(1)时的电流方向相反。电磁波的发射和接收有效的向外发射电磁波的条件:(1)要有足够高的振荡频率,因为频率越高,发射电磁波的本领越大。(2)振荡电路的电场和磁场必须分散到尽可能大的空间,才有可能有效的将电磁场的能量传播出去。采用什么手段可以有效的向外界发射电磁波?改造振荡电路由闭合电路成开放电路电磁波的接收条件电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡精选学习资料 - - - - - - - - - 名

48、师归纳总结 - - - - - - -第 12 页,共 18 页知识点大全电流最强,这种现象叫做电谐振。调谐:使接收电路产生电谐振的过程。通过改变电容器电容来改变调谐电路的频率。检波:从接收到的高频振荡中“检”出所携带的信号。91电磁波谱及其应用光的电磁说(1)麦克斯韦计算出电磁波传播速度与光速相同,说明光具有电磁本质(2)电磁波谱电磁波谱无线电波红外线可见光紫外线X射线n 射线产生机理在振荡电路中,自由电子作周期性运动产生原子的外层电子受到激发产生的原子的内层电子受到激发后产生的原子核受到激发后产生的(3)光谱观察光谱的仪器,分光镜光谱的分类,产生和特征发射光谱连续光谱产生特征由炽热的固体、

49、液体和高压气体发光产生的由连续分布的,一切波长的光组成明线光谱精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 18 页知识点大全由稀薄气体发光产生的由不连续的一些亮线组成吸收光谱高温物体发出的白光,通过物质后某些波长的光被吸收而产生的在连续光谱的背景上,由一些不连续的暗线组成的光谱 光谱分析:一种元素, 在高温下发出一些特点波长的光,在低温下, 也吸收这些波长的光,所以把明线光波中的亮线和吸收光谱中的暗线都称为该种元素的特征谱线,用来进行光谱分析。电磁波的应用:1、电视简单地说: 电视信号是电视台先把影像信号转变为可以发射的电信号,发

50、射出去后被接收的电信号通过还原,被还原为光的图象重现荧光屏。电子束把一幅图象按照各点的明暗情况,逐点变为强弱不同的信号电流,通过天线把带有图象信号的电磁波发射出去。2、雷达工作原理利用发射与接收之间的时间差,计算出物体的距离。3、手机在待机状态下,手机不断的发射电磁波,与周围环境交换信息。手机在建立连接的过程中发射的电磁波特别强。电磁波与机械波的比较: 共同点:都能产生干涉和衍射现象;它们波动的频率都取决于波源的频率;在不同介质中传播,频率都不变不同点:机械波的传播一定需要介质,其波速与介质的性质有关,与波的频率无关而电磁波本身就是一种物质,它可以在真空中传播,也可以在介质中传播电磁波在真空中

51、传播的速度均为3.0 108m s, 在介质中传播时,波速和波长不仅与介质性质有关,还与频率有关不同电磁波产生的机理无线电波是振荡电路中自由电子作周期性的运动产生的红外线、可见光、紫外线是原子外层电子受激发产生的伦琴射线是原子内层电子受激发产生的射线是原子核受激发产生的频率 ( 波长 ) 不同的电磁波表现出作用不同红外线主要作用是热作用,可以利用红外线来加热物体和进行红外线遥感;紫外线主要作用是化学作用,可用来杀菌和消毒;伦琴射线有较强的穿透本领,利用其穿透本领与物质的密度有关,进行对人体的透视和检查部件的缺陷;射线的穿透本领更大,在工业和医学等领域有广泛的应用,如探伤,测厚或用刀进行手术92

52、光的折射定律折射率光的折射定律,也叫斯涅耳定律:入射角的正弦跟折射角的正弦成正比如果用n来表示这个比例常数,就有折射率 : 光从一种介质射入另一种介质时,虽然入射角的正弦跟折射角的正弦之比为一常数精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 18 页知识点大全n,但是对不同的介质来说,这个常数n 是不同的 这个常数n 跟介质有关系,是一个反映介质的光学性质的物理量,我们把它叫做介质的折射率i 是光线在真空中与法线之间的夹角r是光线在介质中与法线之间的夹角光从真空射入某种介质时的折射率,叫做该种介质的绝对折射率,也简称为某种介质的折射

53、率93测定玻璃的折射率(实验、探究)实验原理: 如图所示, 入射光线AO由空气射入玻璃砖,经 OO1后由 O1B方向射出。 作出法线NN1 ,则折射率n=Sin /Sin 注意事项:手拿玻璃砖时,不准触摸光洁的光学面,只能接触毛面或棱,严禁把玻璃砖当尺画玻璃砖的界面;实验过程中,玻璃砖与白纸的相对位置不能改变;大头针应垂直地插在白纸上,且玻璃砖每一侧的两个大头针距离应大一些,以减小确定光路方向造成的误差;入射角应适当大一些,以减少测量角度的误差。94光的全反射光导纤维全反射现象:当光从光密介质进入光疏介质时, 折射角大于入射角. 当入射角增大到某一角度时, 折射角等于900, 此时 , 折射光

54、完全消失入射光全部反回原来的介质中, 这种现象叫做全反射. . 临界角 : 1) 、定义: 光从光密介质射向光疏介质时, 折射角等于900 时的入射角 , 叫做临界角 . 2) 临界角的计算 : sinC=1/n C=arcsin1/n 光导纤维:当光线射到光导纤维的端面上时,光线就折射进入光导纤维内,经内芯与外套的界面发生多次全反射后,从光导纤维的另一端面射出,而不从外套散逸,故光能损耗极小。95光的干涉、衍射和偏振光的干涉(1)产生稳定干涉的条件只有两列光波的频率相同,位相差恒定,振动方向一致的相干光源,才能产生光的干涉。由两个普通独立光源发出的光,不可能具有相同的频率,更不可能存在固定的

55、相差,因此,不能产生干涉现象。(2)条纹宽度 (或条纹间距 ) 相邻两条亮(暗)条纹的间距x 为:上式说明,两缝间距离越小、缝到屏的距离越大,光波的波长越大,条纹的宽度就越大。当实验装置一定,红光的条纹间距最大,紫光的条纹间距最小。这表明不同色光的波长不同,红光最长,紫光最短。几个问题:在双缝干涉实验中, 如果用红色滤光片遮住一个狭缝S1, 再用绿滤光片遮住另一个狭缝S2,当用白光入射时,屏上是否会产生双缝干涉图样?这时在屏上将会出现红光单缝衍射光矢量和绿光单缝衍射光矢量振动的叠加。由于红光和绿光的频率不同,因此它们在屏上叠加时不能产生干涉,此时屏上将出现混合色二单缝衍射图样。在双缝干涉实验中

56、,如果遮闭其中一条缝,则在屏上出现的条纹有何变化?原来亮的地方会不会变暗?如果遮住双缝其中的一条缝,在屏上将由双缝干涉条纹演变为单缝衍射条纹,与干涉条纹相比,这时单缝衍射条纹亮度要减弱,而且明纹的宽度要增大,但由于干涉是受衍射调制的,所以原来亮的地方不会变暗。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 18 页知识点大全双缝干涉的亮条纹或暗条纹是两列光波在光屏处叠加后加强或抵消而产生的,这是否违反了能量守恒定律?暗条纹处的光能量几乎是零,表明两列光波叠加,彼此相互抵消,这是按照光的传播规律,暗条纹处是没有光能量传到该处的原因,不是

57、光能量损耗了或转变成了其它形式的能量。同样,亮条纹处的光能量比较强,光能量增加,也不是光的干涉可以产生能量,而是按照波的传播规律到达该处的光能量比较集中。双缝干涉实验不违反能量守恒定律。(3)薄膜干涉及其应用(1) 原理干涉法检查精密部件的表面取一个透明的标准样板,放在待检查的部件表面并在一端垫一薄片,使样板的平面与被检查的平面间形成一个楔形空气膜,用单色光从上面照射,入射光从空气层的上下表面反射出两列光形成相干光,从反射光中就会看到干涉条纹,如图2-3 甲所示。如果被检表面是平的,那么空气层厚度相同的各点就位于一条直线上,产生的干涉条纹就是平行的 ( 如图 2-3 乙) ;如果观察到的干涉条

58、纹如图2-3 丙所示, A、B处的凹凸情况可以这样分析:由丙图知,P、Q两点位于同一条亮纹上,故甲图中与P、Q对应的位置空气层厚度相同。由于Q位于 P的右方 (即远离楔尖 ) ,如果被检表面是平的,Q处厚度应该比P处大,所以,只有当A处凹陷时才能使P与 Q处深度相同。同理可以判断与M对应的 B处为凸起。增透膜是在透镜、棱镜等光学元件表面涂的一层氟化镁薄膜。当薄膜的两个表面上反射光的路程差等于半个波长时,反射回来的光抵消。从而增强了透射光的强度。显然增透膜的厚度应该等于光在该介质中波长的1/4 。由能量守恒可知,入射光总强度=反射光总强度 +透射光总强度。光恰好实现波峰与波谷相叠加,实现干涉相消

59、,使其合振幅接近于零,即反射光的总强度接近于零,从总效果上看,相当于光几乎不发生反射而透过薄膜,因而大大减少了光的反射损失,增强了透射光的强度。增透膜只对人眼或感光胶片上最敏感的绿光起增透作用。当白光照到( 垂直 ) 增透膜上,绿光产生相消干涉,反射光中绿光的强度几乎是零。这时其他波长的光( 如红光和紫光 ) 并没有被完全抵消。因此,增透膜呈绿光的互补色淡紫色。光的衍射(1)现象:单缝衍射a) 单色光入射单缝时,出现明暗相同不等距条纹,中间亮条纹较宽,较亮两边亮条纹较窄、较暗b) 白光入射单缝时,出现彩色条纹 园孔衍射:光入射微小的圆孔时,出现明暗相间不等距的圆形条纹 泊松亮斑光入射圆屏时,在

60、园屏后的影区内有一亮斑(2)光发生衍射的条件: 障碍物或孔的尺寸与光波波长相差不多,甚至此光波波长还小时,出现明显的衍射现象自然光:从普通光源直接发生的天然光是无数偏振光的无规则集合,所以直接观察时不能发现光强偏于一定方向这种沿着各个方向振动的光波的强度都相同的光叫自然光;太阳、电灯等普通光源发出的光,包含着在垂直于传播方向的平面内沿一切方向振动的光,而且沿着各个方向振动的光波强度都相同,这种光都是自然光自然光通过第一个偏振片P1(叫起偏器)后,相当于被一个“狭缝”卡了一下,只有振动方向跟“狭缝” 方向平行的光波才能通过自然光通过偏振片Pl 后虽然变成了偏振光,但由于精选学习资料 - - -

61、- - - - - - 名师归纳总结 - - - - - - -第 16 页,共 18 页知识点大全自然光中沿各个方向振动的光波强度都相同,所以不论晶片转到什么方向,都会有相同强度的光透射过来 再通过第二个偏振片P2 (叫检偏器) 去观察就不同了;不论旋转哪个偏振片,两偏振片透振方向平行时,透射光最强,两偏振片的透振方向垂直时,透射光最弱光的偏振的应用:光的偏振现象在技术中有很多应用例如拍摄水下的景物或展览橱窗中的陈列品的照片时,由于水面或玻璃会反射出很强的反射光,使得水面下的景物和橱窗中的陈列品看不清楚,摄出的照片也不清楚如果在照相机镜头上加一个偏振片,使偏振片的透振方向与反射光的偏振方向垂

62、直,就可以把这些反射光滤掉,而摄得清晰的照片;此外,还有立体电影、消除车灯眩光等等96激光的特性及应用激光,是“受激辐射光放大”的简称,它是用人工的方法产生的一种特殊的光激光是20世纪的一项重要发明,由于它有着普通光无法比拟的一些特性,已经在广泛的领域得到应用产生激光的装置称为激光器,它主要由三部分组成,即工作物质、抽运系统和光学谐振腔激光器常以使用的工作物质命名,例如常用的红宝石激光器、氦氖激光器等光学谐振腔主要由两块平行放置的镀银镜面组成,其中一块是全反射镜,另一块是部分反射镜,有百分之见的透射率,两镜面间形成谐振胜激光器工作时设法使工作物质处于激发态,它辐射的光子射向其他方向的都将很快逸

63、出腔外,只有沿轴线运动的光子在A,B两镜间来回反射,并且在工作物质中引发与它相同的光子,从而得到雪崩式的放大,从部分反射膜一侧输出的就是具有优越性能的激光束激光的特性: (4 个方面)(1)方向性好 激光束的光线平行度极好,从地面上发射的一束极细的激光束,到达月球表面时,也只发散成直径lm 多的光斑,因此激光在地面上传播时,可以看成是不发散的(2)单色性强 激光器发射的激光,都集中在一个极窄的频率范围内,由于光的颜色是由频率决定的,因此激光器是最理想的单色光源(3)相干性好 由于激光束的高度平行性及极强的单色性,因此激光是最好的相干光,用激光器作光源观察光的干涉和衍射现象,都能取得较好的效果(

64、4)亮度高 所谓亮度, 是指垂直于光线平面内单位面积上的发光功率,自然光源亮度最高的是太阳,而目前的高功率激光器,亮度可达太阳的1 万倍97狭义相对论的基本假设爱因斯坦狭义相对性原理的两个基本假设:(1) 狭义相对性原理:在不同的惯性参考系中,一切物理定律 (不论力学规律还是电磁规律)都是相同的。(2)光速不变原理:真空中的光速在不同的惯性系中都是相同的。即光速与光源、 观测者间的相对运动没有关系。98狭义相对论的几个重要结论时间和空间的相对性 1同时的相对性: 指两个事件, 在一个惯性系中观察是同时的,但在另外一个惯性系中观察却不再是同时的。2长度的相对性: 指相对于观察者运动的物体,在其运

65、动方向的长度,总是小于物体静止时的长度。而在垂直于运动方向上,其长度保持不变。长度收缩公式:(注意:各字母的含义?)3 时间间隔的相对性:指某两个事件在不同的惯性系中观察,它们发生的时间间隔是不同的。公式表示:式中:表示与物体相对静止的观察者测得的时间间隔精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 18 页知识点大全表示与物体相对运动的观察者测得的时间间隔 V表示观察者与物体之间的相对速度意义:动钟变慢(或称时间膨胀)。实验验证: 子的存在。4相对论的时空观经典物理学的时空观(牛顿物理学的绝对时空观):时间和空间是脱离物质而存在的

66、,是绝对的,空间与时间之间没有任何联系。相对论的时空观(爱因斯坦相对论的相对时空观):空间和时间都与物质的运动状态有关。相对论的时空观更具有普遍性,但是经典物理学作为相对论的特例,在宏观低速运动时仍将发挥作用。狭义相对论的其他结论1相对论速度变换公式情境: 设车对地面的速度为v,车上的人以速度u沿着火车前进的方向相对火车运动,那么人相对于地面的速度u。公式:适用条件:只适用于同一直线上运动物体的速度叠加。意义:人对地面的速度u 要比 u和 v 之和要小。2相对论质量公式:式中: m表示物体以速度v 运动时的质量(即动质量) m0表示物体静止时的质量(即静质量)意义:物体运动时的质量m总要大于静

67、止时的质量m0 。3质能方程公式:(或)式中: m是物体的质量 E是物体具有的能量意义: (1)质量为m的物体,对应(不能说“具有”)的能量为mc2。( 2)当质量减少(增加)m时,就要释放出(吸收)的能量。爱因斯坦质能方程从理论上预言了核能释放及原子能利用和原子弹研制的可能性。附:广义相对论简介(不作要求)1广义相对性原理:在任何参考系(包括惯性系和非惯性系)中,物理规律都是相同的。2等效原理:一个均匀的引力场与一个做匀加速运动的参考系等价。意义:通过等效原理,爱因斯坦将万有引力和非惯性系的问题联系了起来。3广义相对论的几个结论:(1)物质的引力使光线弯曲(或称:光线经过强引力场时会发生弯曲)。(2)引力场的存在使得空间不同位置的时间进程出现差别。例如: 在强引力的星球附近,时间进程会变慢。实例: 在矮星表面, 时间进程比较慢,原子发光频率比同种原子在地球上的低,看起来偏红,这个现象叫做引力红移精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 18 页

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号