焊接机器人毕业论文

上传人:ni****g 文档编号:563645307 上传时间:2023-04-26 格式:DOCX 页数:25 大小:683.33KB
返回 下载 相关 举报
焊接机器人毕业论文_第1页
第1页 / 共25页
焊接机器人毕业论文_第2页
第2页 / 共25页
焊接机器人毕业论文_第3页
第3页 / 共25页
焊接机器人毕业论文_第4页
第4页 / 共25页
焊接机器人毕业论文_第5页
第5页 / 共25页
点击查看更多>>
资源描述

《焊接机器人毕业论文》由会员分享,可在线阅读,更多相关《焊接机器人毕业论文(25页珍藏版)》请在金锄头文库上搜索。

1、第 1 章 绪论1.1课题研究的目的及意义焊接是制造业中最重要的工艺技术之一。它在机械制造、核工业、航空航天、 能源交通、石油化工及建筑和电子等行业中的应用越来越广泛。随着科学技术的发展, 焊接已从简单的构件连接方法和毛坯制造手段,发展成为制造业中一项基础工艺,一 种生产尺寸精确的产品的生产手段。传统的手工焊接已不能满足现代高技术产品制造 的质量、数量要求。因此,保证焊接产品质量的稳定性、提高生产率和改善劳动条件 已成为现代焊接制造工艺发展亟待解决的问题。电子技术、计算机技术、数控及机器 人技术的发展为焊接过程自动化提供了十分有利的技术基础,并已渗透到焊接各领域 中。近20 年来,在半自动焊、

2、专机设备以及自动焊接技术方面已取得了许多研究和 应用成果,表明焊接过程自动化已成为焊接技术新的生长点之一。从21 世纪先进制 造技术的发展要求看,焊接自动化生产已是必然趋势。焊接机器人的诞生是焊接自动 化革命性的进步,它突破了焊接刚性自动化的传统方式,开拓了一种柔性自动化的生 产方式,从而使中小批量的产品自动化焊接成为可1。焊接机器人已经广泛应用于汽车、工程机械、摩托车等行业,极大地提高了焊接 生产的自动化水平,使焊接生产效率和生产质量产生了质的飞跃。同时改善了工人的 劳动环境2。但是,现在焊接领域中自动化程度最高的手臂式机器人在使用时有两个 局限性:一个是它的活动范围较小,因为它像一个手臂,

3、手臂长 1.52 米,也就是 其活动半径,所以焊接的工件不能太长,最大范围也不能超过 2 米。二是它必须用 编程或示教进行工作,对不规则的焊缝,特别是在焊接过程中焊缝发生形变时,则很 难适应。然而,许多大型工件体积非常庞大,而且必须在工地和现场进行焊接。例如: 石化工业中的大型储油罐、球罐,造船业中的各种轮船,对这类产品的焊接,就很难 实现自动化,许多建设工作仍然采用人工焊接3。因此,给焊接机器人加装各种传感 器,使它们具有焊接路径自主获取、焊缝跟踪以及焊接参数在线调整等能力,具有很 高的实用价值。机器人焊接过程的自主化和智能化已经成为科研工作者的一个研究重 点。移动焊接机器人由于其良好的移动

4、性、强的磁吸附力以及较高的智能,成为解决 大型焊接结构件自动化焊接的有效方法4。尽管自主移动机器人的实用化研究还不够 完善,但移动机器人是解决无轨道,无导向,无范围限制焊接的良好方案。1.2国内外研究现状自 1962 年美国推出世界上第一台 Unimate 型和 Versatra 型工业机器人以来, 越来越多的工业机器人投入生产使用中。这其中大约有半数是焊接机器人。焊接机器 人是在工业机器人上装备焊接系统,如送丝机、软管、焊枪、焊炬或焊钳,并配备相 应的焊接电源的自动化焊接装备1。从 20 世纪 60 年代诞生和发展到现在,焊接机器人可大致分为三代: 第一代是指基于示教再现工作方式的焊接机器人

5、,由于其具有操作简便、不需要 环境模型、示教时可修正机械结构带来的误差等特点,在焊接生产中得到大量使用。 第二代是指基于一定传感器信息的离线编程焊接机器人,得益于焊接传感器技术 和离线编程技术的不断改进,这类机器人现已进入应用研究的阶段。第三代是指装有多种传感器,接收作业指令后能根据客观环境自行编程的高度适 应性智能焊接机器人,由于人工智能技术的发展相对滞后,这一代机器人正处于试验 研究 阶段。随着计算机控制技术的不断进步,使焊接机器人由单一的示教再现型向多传感、 智能化方向发展将成为科研人员追求的目标5。焊接机器人的技术水平在不断的进步,目前,焊接机器人几乎全部采用交流伺 服电机驱动,这种电

6、机因为没有电刷,故障率很低。控制器中普遍采用32 位的计算 机,除可以控制机器人本体的 56 个轴外,还可以使外围设备和机器人协调联动。 例如,日本安川公司的新型焊接机器人控制器NX100技术中,一台控制器能同时控 制四台机器人共 36 轴(每台机器人有本体 6 个轴,3 个外部轴),并且能够使用软 PLC对周围装置进行控制。与NX100配套的示教盒也采用了功能强大的Windows CE操作系统。而瑞士的ABB等其他公司也有类似的控制器产品,如ABB的第五代 机器人控制器IRC56-7。配套焊接系统也有很多新的进展,在 1993年的埃森展览会上,日本松下公司 把旋转电弧焊技术用于弧焊机器人。由

7、于采用旋转电弧焊时,焊丝能够以 50Hz 以上 的频率旋转,所以用这种技术进行焊缝跟踪时,其跟踪精度比机器人经常采用的摆动 焊(摆动频率小于10Hz)要高得多。该公司还于1993年首先销售在控制柜中内 藏焊机的机器人,依靠数字通讯技术实现了焊机和机器人的结合。并于2004年研制 出了 TAWERS 机器人,实现了焊机和机器人的融合,即由机器人控制器直接控制焊 接波形。其中焊机采用了频率为 100kHz 的逆变电源,体积小巧,控制精度高。焊 机和机器人融合的优点主要有焊机和焊枪的动作能够实现同步的精确控制,便于实现 缜密的焊接条件控制,并使焊接系统小型化。另外,该机器人把送丝机和机器人手臂 做成

8、一体,使送丝机能够配合焊枪的动作进行转动,以保证送丝始终顺畅。焊接是工业机器人应用最重要的领域之一,随着国外对工业机器人在焊接方面的 研究应用,基于生产实践的需要,我国也开始了焊接机器人的研究。20 世纪 50 年 以来我国在焊缝自动跟踪方面有了长足发展,技术水平不断提高,并取得了许多应用 成果。我国已发展了各种类型的传感器技术,控制坐标已从单坐标和双坐标发展到了多 坐标。20世纪5060年代多采用接触跟踪,西安交通大学和三桥机车车辆厂是中 国从事接触跟踪和电磁跟踪研究较早的单位。6070年代后期发展了电磁跟踪、光 电跟踪、电弧跟踪、激光跟踪等非接触跟踪技术。华中科技大学与湖北造船厂合作研 制

9、成功全位置电磁跟踪气体保护焊机,跟踪精度达土 1mm。华南理工大学与广州造 船厂共同研制的电磁立焊缝自动跟踪焊机,用在万吨轮的焊接上。天水电气传动研究 所和上海造船工艺研究所合作,研制的光电跟踪装置用于螺旋管焊接和船舶的焊接生 产中。哈尔滨焊接研究所与辽阳钢厂合作研制的激光跟踪装置用于螺旋管焊接自动生 产线等。20 世纪 80 年代后期,微机跟踪和电视跟踪技术得到迅速发展,从而为传 统焊接自动化向现代焊接自动化发展奠定了基础9。从 20 世纪 70 年代末开始,清华大学潘际銮院士对电弧传感焊缝跟踪做了大量 研究。80 年代末,潘院士在电弧传感器结构及控制方面又进行了新的研究,研制出 一种空心马

10、达式高速旋转扫描电弧传感器,并成功地对一种无道轨的自动小车进行跟 踪控制,获得了专利10。此外,哈尔滨工业大学研制成功了单片机控制高精度激光跟踪系统,西北工业大 学研制成功微处理机控制熔化极脉冲窄间隙焊缝自动跟踪系统等,都获得了较好的自 动控制效果11。计算机图像法控制技术也在80 年代研究成功,如水电部电力建设研 究所研制成功 DL-64 固态图像传感器进行焊缝跟踪的装置。总的说来,我国的焊接研究人员对各种焊缝跟踪方法进行了研究,并在某些特定的应 用中获得了成功。但是,由于种种原因,我国的焊缝跟踪技术大都还停留在实验室中, 在生产中应用的绝大部分还是针对特定焊接对象、工艺和焊接状况的焊缝跟踪

11、系统,能够形成商业化的产品非常少见,而这正是我国在焊缝跟踪领域与发达国家的最大差 距所在12。第 2 章 焊接机器人系统组成2.1系统总体结构本论文研究的爬行式焊接机器人系统主要由运动机构、焊接系统、检测系统与控 制系统四部分组成,系统基本框架如图 2.1 所示。该机器人的运动机构由爬行机构和 十字滑块组成;焊接系统包括有焊接电源、送气送丝机构、焊炬摆动机构组成;检测 系统包括有激光图像传感器,霍尔传感器,限位开关和位移传感器等各种传感器来得 到各种可用于控制的信息与信号;控制部分由控制器、人机界面、驱动电路及设备、 远程操作盒等几部分组成。if丝机构控制英序2.2小车部分该爬行式全位置焊机器

12、人半履带小车,特征是小车的后驱动依靠两个后交(直)流 伺服电机单独驱动两根履带,具有较强的驱动力,双履带为小车左、右配置,从动链 轮的芯轮轴置于可前后和上下移动的调节滑块和弹性悬架上,前轮既起转向作用又具 有驱动功能,小车牵引力得到增强,能满足在小车负载较大时对牵引力的需求,转向 精度高;依靠永磁磁钢、扼铁与被焊工件间形成强磁路所构成的吸附磁路吸附在所需 焊接的钢构件上。小车由控制电路发出信号控制交(直)流伺服电机和转向步进电机, 从而完成焊缝轨迹自动跟踪,交(直)流伺服电机调速方便,反应速度快,可实现无级 变速,能保证小车精确位置移动。2.3运动机构焊接机器人运动机构的任务是携带焊接装置,移

13、动到工件壁面上所需到达的任意 位置。该机器人具备6个自由度,包括焊炬的X、Y、Z三个方向平动及转动姿态的 调整。2.3.1 爬行机构2.3.1.1 移动方式目前移动机器人采用的移动机构类型主要有轮式、步行式和履带式三种。轮式具 有移动平稳、机动性高和便于操作等优点,但是其着地面积小、壁面适应性差;步行 式能够在凹凸不平的地面上行走,可跨越台阶,具有良好的机动性,但存在运动间歇 大、稳定性差等问题20。这两种移动机构都无法很好地满足焊接的实际要求。履带 式能够在凹凸不平的地面上行走,稳定性好,且能够爬越较大斜坡,适合焊接现场需 要。综合以上考虑,本论文所设计机器人采用履带式移动机构,由两个电机分

14、别带动 两个无轨道履带运动。2.3.1.2 传动方式根据结构的需要,综合考虑性能成本等方面的原因,本论文选用了链传动作为履 带前后轮传动方式。链传动主要用在要求工作可靠,且两轴相距较远。与带传动相比, 链传动无弹性滑动和打滑现象,因而能保持准确的平均传动比,传动效率高。整个行 走机构安装在车体两侧,由主动链轮、行走轮、链条、可控永磁装置及链条张紧机构 组成。可以在车体内部的一端安装动力部分,其输出分别带动车体两侧行走机构的主 动链轮和行走轮,在车体内部的另一端安置行走轮轴,其两端安装链轮和行走轮。链 轮带动两根封闭式的链条滚动,在两根链条之间的空隙处安装可控永磁铁装置,可控 永磁铁装置随链条运

15、动。在车体两侧的侧板 下端装有磁悬浮构件,以增加吸附力。将车体放在导磁性材料的工件上,车体就可以 吸附在上面,启动电机,车体即可在工件上爬行20-2。12.3.1.3 吸附方式由于焊接机器人要求在壁面、球面、管道等曲面上爬行,所以运动机构必须具有 较强的壁面适应能力和承载能力。目前爬壁机器人的吸附方式有三种:真空吸附、磁 吸附和推力吸附。由于焊接工件表面为导磁性材料,且凹凸不平,为了提高吸附力, 所以本课题选用磁吸附法作为机器人吸附方式。2.3.1.4 驱动方式本机器人系统是采用两轮独立驱动的双履带结构。可采用两台交流伺服电机分别 作为两履带轮的驱动电机,驱动单元包括带有减速齿轮的交流电机、伺

16、服放大器以及 用作速度反馈的旋转光码盘,它们提供转动时所需要的转速和力矩。可以通过调节两 履带轮的转速来控制车体的运行速度和转动角速度,使机器人能够按照所要求方向和 速度移动,完成前进、后退、按曲率半径回转及原地转向等动作。2.3.2十字滑块在焊接中,要求焊接机器人的焊炬必须精确地沿焊缝以恒定的焊接速度运动,而 仅凭履带式移动机器人本体则难以实现实时、准确地运动轨迹控制,因而不能采用焊 炬与轮式机器人本体相固接的机器人运动机构。为此,必须设计一种合理的机器人运 动机构,能够在机器人本体运动的基础上实现对焊炬位置的精确控制。我们采用了在 移动机器人本体上加装快速反应十字滑块,焊炬与十字滑块固接的方法,让焊接机器 人本体在一定的误差范围内粗略跟踪焊缝,十字滑块实时准确的跟踪焊缝。24焊接系统由于全位置焊接的焊缝成形控制比较困难,不是所有的焊接方法都可以采用的, 一般只有焊

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号