检测技术实验指导书

上传人:re****.1 文档编号:563464633 上传时间:2023-09-09 格式:DOCX 页数:12 大小:133.51KB
返回 下载 相关 举报
检测技术实验指导书_第1页
第1页 / 共12页
检测技术实验指导书_第2页
第2页 / 共12页
检测技术实验指导书_第3页
第3页 / 共12页
检测技术实验指导书_第4页
第4页 / 共12页
检测技术实验指导书_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《检测技术实验指导书》由会员分享,可在线阅读,更多相关《检测技术实验指导书(12页珍藏版)》请在金锄头文库上搜索。

1、检测技术实验指导1 金属箔式应变片与三种测量桥路的比较一、 实验目的1、测试应变梁变形的应变输出。2、掌握应变片单臂、半桥、全桥的工作原理和工作情况。3、验证应变片单臂、半桥、全桥的性能及相互之间的关系二、 实验原理应变片将应变的变化转换成电阻的相对变化,还要把电阻的变化再转换为电压或电流的变化,才能用电测仪表进行测量,通常采用电桥电路来实现微小阻值变化的转换。图1是一个直流电桥,它的四个桥臂由电阻R、R、R、R组成,电阻的相对变化 1234率分别为 AR / R 、 AR / R 、 AR / R 、 AR / R ,且 R = R = R112233441供桥电压,则桥路输出R x R 一

2、 R x R电压为:U =1324 U(R + R )(R + R )01234当电桥平衡时,桥路相对臂电阻乘积相等,电桥输出电压为零,且注意相对臂受力方向一致,相邻臂受力方向相反。根据电桥工作时参与工作的桥臂可分为:单臂、半桥和全桥三种形式。当四个桥臂都为应变片时,桥路的输出电压约为=R图1电桥电路图=R , U 是U AR AR AR AR UU =0 (2 +4) = K ( + )4 R R R R 41234当 R 单臂工作时:1输出电压U =U AR014R1电桥电压灵敏度 SU0A R / R1U0K 1双臂工作时:输出电压U = o4ARAR(片-3RR13电桥电压灵敏度S =

3、0 = 2叶=0A R / RK 2ARAR丁 +丁)= UK RR034U A RA R当R、R、R、R全桥工作时:U =0( i -21 2344 R R12电桥电压灵敏度S =0一 = UAR /R K0由此可知,单臂、半桥、全桥电路的灵敏度依次增大;当E和电阻相对变化一定时,电桥的输出电压及其电压灵敏度与各桥臂阻值的大小无关。三、主要仪器及耗材直流稳压电源(4V)、电桥、差动放大器、贴于主机工作台悬臂梁上的箔式应变片、 螺旋测微仪、称重砝码、数字电压表、加热器、导线等。四、实验内容和步骤1、设定旋钮的初始位置:直流稳压电源打到2V档,电压表打到2V档,差动放大器增 益打到最大。2、差动

4、放大器调零:开启仪器电源,差动放大器增益置于最大位置(顺时针方向旋到底), 差放的正负输入端与地端连接在一起。输出端接数字电压表2V档。开启主机电源,用调 零电位器调整差动放大器输出电压为零,然后拔掉实验线。调零后仪器面板上的“增益、 调零”电位器均不应再变动。如果使用毫伏表,则使毫伏表输入端对地短路,调整“调零”电位器,使指针居“零” 位。拔掉短路线,指针有偏转是有源指针式电压表输入端悬空时的正常情况。调零后关闭仪器电源。测微头装于悬臂梁前端的永久磁钢上,并调节使应变梁处于基 本水平状态。3、按图2将各部件连接成测量线路。桥路中R1、R2、R3和Wd为可调电位器,r为调平 衡电阻,R4为工作

5、应变片(可任选上、下梁中的一片工作片)直流激励电源为4V。图14、确认接线无误后开启仪器电源,并预热数分钟,使电路工作趋于稳定选择适当的放大增益,然后调节电桥 Wd 电位器,使电压表输出为零。5、加上砝码,每加一个读数,将测得数值填入下表:重量w(g)电压V(mV)6、保持放大器增益不变,将R3换为与R4工作状态相反的另一应变片,形成半桥,调整电桥平衡电位器,使电压表输出为零。然后依次加上砝码,同样测出读数,填入下表:重量W(g)电压V(mV)五、数据处理与分析1、根据表中所测数据计算灵敏度 S ,并比较大小2、分析非线性误差,并说明误差产生的原因。3、在同一坐标纸上描出W - V关系曲线。六

6、、实验注意事项1、实验前应检查实验接插线是否完好,连接电路时应尽量使用较短接插线,以避免引 入干扰。2、接插线插入插孔,以保证接触良好,切忌用力拉扯接插线尾部,以免造成线内导线 断裂。3、稳压电源不要对地短路。所有单元电路的地均须与电源地相连。4、半桥和全桥实验时,应变片接入电桥时注意其受力方向。尤其在做全桥实验时,一 定要保证电路中相对臂工作方向相同。5、直流稳压电源不能过大,以免损坏应变片。6、在更换桥路连接时,应先将电源关闭,再接线,以免损坏应变片。7、在实验过程中发现F/V表超量程-1或1显示,可换档将量程扩大或将差动增益减 小。8、在本实验中只能将放大器接成差动形式,否则系统不能正常

7、工作。9、进行上述实验时,激励电压、差动放大器增益、测微头起始点位臵等外部环境必须 一致,否则就无法进行比较。七、思考题1、本实验对直流稳压电源和差动放大器有何要求?2、应变片桥路(差动电桥)连接应注意哪些问题?3、电桥的灵敏度与什么因素有关?如何用电桥特性来提高灵敏度和消除不利因素的影 响?4、测量时,电桥不平衡会对测量产生什么影响,为什么每次测量前要重新检查平衡?2 螺管型差动变压器式电感传感器的性能与位移测量一、实验目的1、了解差动变压器的基本结构及工作原理,验证差动变压器的基本特性。2、了解差动变压器零点残余电压产生的原因及补偿方法;3、掌握差动变压器测量系统的组成和标定方法。4、掌握

8、位移量的测量方法。二、实验原理电感式传感器是一种将位臵量的变化转换为电感量变化的传感器,差动变压器由衔 铁、初级线圈、次级线圈和线圈骨架组成,初级线圈做为差动变压器激励用,相当于变压 器原边。次级线圈由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器副边。 差动变压器是开磁路,工作是建立在互感基础上的,其原理及输出特性见图3。图 3 差动变压器结构原理及输出特性图由于零点残余电压的存在会造成差动变压器零点附近的不灵敏区,此电压经过放大器 还会使放大器未级趋向饱和,影响电路正常工作,因此必须采用适当的方法进行补偿使之 减小。零点残余电压中主要包含两种波形成份:a、基波分量:这是由于差动变压

9、器二个次级绕组因材料或工艺差异造成等效电路参 数(M、L、R)不同,线圈中的铜损电阻及导磁材料的铁损、线圈中线间电容的存在,都 使得激励电流与所产生的磁通不同相。b、高次谐波:主要是由导磁材料磁化曲线的非线性引起,由于磁滞损耗和铁磁饱和的影响,使激励电流与磁通波形不一致,产生了非正弦波(主要是三次谐波)磁通,从而在二次绕组中感应出非正弦波的电动势。减少零点残余电压的办法是:(1)从设计和工艺制作上尽量保证线路和磁路的对称 (2)采用相敏检波电路。(3)选用补偿电路。三、主要仪器及耗材 差动变压器、电感传感器实验模块、差动放大器、音频振荡器、移相器、相敏检波器 低通滤波器、螺旋测微仪、数字电压表

10、、双线示波器、砝码、导线等。四、实验内容和步骤1、按图3接线,差动放大器增益适度,音频振荡器LV端输出5KHZ,VP-P值2V。1卜电压表图 4 电感式传感器实验电路图2、调节电桥W、W电位器,调节测微头带动衔铁改变其在线圈中的位置,使系统输出为DA零。3、旋动测微头使衔铁在线圈中上、下有一个较大的位移,用电压表和示波器观察系统输出是否正负对称。如不对称则需反复调节衔铁位置和电桥、移相器,做到正负输出对称。4、旋动测微头,带动衔铁向上5mm,向下5 mm,每旋一周(0.5mm),记录一电压值并填入表 1、表 2。衷I衞戡向上位移位移 (mm)-2.5-2.0*15-104).500.51015

11、2.02.5屯压(V)衷2衔戡向下位移位移 (mm)-2.5-2.0-15-10-0.500 51015202.5屯压(V)五、数据处理与分析1、根据表中所测数据计算灵敏度S,并分析非线性误差,说明误差产生的原因。2、在坐标纸上描出X - V关系曲线。六、实验注意事项1 、实验前应检查实验接插线是否完好,连接电路时应尽量使用较短接插线,以避免引 入干扰。2 、接插线插入插孔,以保证接触良好,切忌用力拉扯接插线尾部,以免造成线内导线 断裂。3、照线路图,应在确保接线无误后才能开启电源。4、差动变压器的激励源必须从音频振荡器的电流输出口 (LV插口)输出。5、差动变压器的两个次级线圈必须接成差动形

12、式。6、系统标定时用双踪示波器CHI、CH2通道分别接入相敏检波器1、2端口,用手将衔 铁位置压到最低,调节电桥、移相器,当CH1、CH2所观察的波形正好同相或反相时, 则系统输出可做到正负对称。7、注意示波器应先通电预热后,再接入电路中观察波形,否则容易烧毁传感器电路。8、差动放大器的增益要比较小,稍有增益即可。示波器的“触发”也要选择正确。9、差动变压器与示波器的连线应尽量短一些,以免引入干扰七、思考题1、简述差动变压器的工作原理,并说明差动变压器与一般普通变压器有什么区别?2、在测量数据时,测微头向上和向下移动时,电路的输出有何不同?输入输出关系曲 线是否重合?为什么?3、移向器、相敏检

13、波电路、低通滤波器在测量系统中有什么样的作用?3 电涡流式传感器的静态标定一、实验目的1、了解电涡流传感器的结构、原理、工作特性。2、掌握用电涡流传感器测量振幅的原理和方法。3、通过实验说明不同材料对电涡流传感器特性的影响。二、实验原理 电涡流式传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,与其 平行的金属片上产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、 导磁率、厚度、温度以及线圈的距离X有关。当平面线圈、被测体(涡流片)、激励源已 确定,并保持环境温度不变,阻抗Z只与X距离有关。将阻抗变化经涡流变换器变换成电 压V输出,则输出电压是距离X的单值

14、函数。三、主要仪器及耗材 电涡流线圈、多种金属涡流片、电涡流变换器、测微仪、示波器、电压表直流稳压电 源、差动放大器。四、实验内容和步骤1、安装好电涡流线圈和金属涡流片,注意两者必须保持平行。安装好测微头,将电涡流 线圈接入涡流变换器输入端。涡流变换器输出端接电压表2 0V档。2、差动放大器调零,按照图6接线。开启仪器电源,用测微仪将电涡流线圈与涡流片分 开一定距离,此时输出端有一电压值输出。用示波器接涡流变换器输入端观察电涡流传感 器的高频波形,信号频率约为1MHZ。1屯涡诡传感器小波器-IOV图6 电涡流传感器实验图3、用测微仪带动振动平台使平面线圈完全贴紧金属涡流片,此时涡流变换器输出电压为零。涡流变换器中的振荡电路停振。5、分别对铁

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号