专利申请样本

上传人:枫** 文档编号:562845053 上传时间:2022-10-30 格式:DOC 页数:20 大小:150.54KB
返回 下载 相关 举报
专利申请样本_第1页
第1页 / 共20页
专利申请样本_第2页
第2页 / 共20页
专利申请样本_第3页
第3页 / 共20页
专利申请样本_第4页
第4页 / 共20页
专利申请样本_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《专利申请样本》由会员分享,可在线阅读,更多相关《专利申请样本(20页珍藏版)》请在金锄头文库上搜索。

1、 说 明 书膀胱肌电图及电刺激电极 技术领域本发明属于医用物理诊断及治疗领域,涉及神经电生理系统及电刺激生物反馈治疗系统,具体用于盆底神经电生理的膀胱肌电图的记录电极及膀胱逼尿肌的电刺激治疗系统。背景技术由于盆底脏器及盆底肌肉位置的特殊性,其解剖位置很难触及,特别进行相关脏器的电生理检测及治疗非常困难,膀胱作为盆底重要脏器之一,可以对其生物电活动的规律进行记录及对膀胱进行物理治疗,避免手术风险成能为盆底外科发展起到重要作用。发明内容本发明的目的是提供一种腔内电极,配合神经电生理设备,可在无需创伤手术的情况下将电极置入膀胱,使电极接触膀胱壁肌肉,将膀胱逼尿肌的电活动信号采集传输到神经电生理设备上

2、,通过监测膀胱肌肉的电生理信号活动,用于诊断膀胱的正常及非正常生理活动,如膀胱过渡活动症。此外,该电极可连接到盆底电刺激生物反馈治疗仪,通过低频电流刺激膀胱逼尿肌缓解逼尿肌紧张症状或通过中频电流刺激膀胱逼尿肌增长逼尿肌力量,逐步恢复患者排尿功能。本发明监测系统的特点: 1.盆底检查及治疗的困难在于盆底。2.采用ZigBee技术,通过ZigBee节点方便地组网,实现了低成本、低耗电、网络节点多、传输距离远的加速度无线传感器网络。3.采用GPRS无线通信技术进行数据传输与控制,避免了传统数据传输方式带来的电缆施工,大大减少了施工的难度和系统安装成本;系统既可连续安装又可离散安装。4.采用各种低功耗

3、、超低功耗的传感器和微解决器芯片,大大减少了系统的功耗;采用太阳能加蓄电池充放电电路,为系统提供稳定的电源,使得系统可以连续、长期、稳定地在野外工作。 5.采用B/S模式实现远程监控,客户端免维护,使系统的分布相对集中,有助于系统的维护,具有较好的可扩展性以及灵活性;6.基于对前期导线舞动相关数据的研究,监控中心的上位机软件嵌入了多种智能算法,大大减小了数据的误差,提高了数据的拟合精度;附图说明图1是本发明监测系统一种实行例的结构示意图;图2是本发明监测系统中杆塔监测分机的结构示意图;图3是本发明监测系统中的无线加速度传感器节点的结构示意图;图4是本发明监测系统中电源模块的结构示意图;图5是本

4、发明监测系统中的无线加速度传感器节点的程序流程图;图6是本发明监测系统中杆塔监测分机的流程图。图中,1.无线加速度传感器节点,2.杆塔监测分机,3.GPRS通信模块,4.监控中心,5.电源模块,6.微解决器单元,7.ZigBee通信模块,8.数据存储单元,9.液晶显示模块,10.雨量传感器,11.压力传感器,12.角位移传感器,13.温湿度传感器,14.风速传感器,15.风向传感器,日照强度传感器,17.舞动信息信号解决单元,18.加速度传感器。其中,5-1.太阳能电池,5-2.充电保护电路,5-3.场效应管A,5-4.+12V蓄电池,5-5.场效应管B,5-6.放电保护电路,5-7定期断电复

5、位电路,5-8. +5V电源稳压器,7-1.无线单片机,7-2.外部天线,7-3.印刷版微波传输线。具体实行方式下面结合附图和具体实行方式对本发明进行具体说明。本发明监测系统一种实行例的结构,如图1所示,涉及多个无线加速度传感器节点1、多个杆塔监测分机2、GPRS通信模块3、监控中心4和电源模块5。无线加速度传感器节点1,用于采集输电线路监测点的位移加速度信号,并将采集的信号传输给杆塔监测分机2;杆塔监测分机2用于监测采集输电线路周边环境的局部气象信息和杆塔线路的覆冰状况信息,用于接受无线加速度传感器节点1发送的信号,用于将采集的信息和接受到的信号进行分析解决、储存和显示,并将解决得到的数据送

6、到GPRS通信模块3,且一个杆塔监测分机2用于接受若干无线加速度传感器1传输的信号;GPRS通信模块3采用H7118C GPRS DTU,用于接受杆塔监测分机2发送的信息,并将接受到的信息传输至监控中心4,用于接受监控中心4发出的指令,并将接受到的指令传输给杆塔监测分机2;监控中心4,用于发出指令,并将该指令发送给GPRS通信模块3,用于接受GPRS通信模块3发送的数据,对接受到的数据进行解决、分析和存储;电源模块5由蓄电池、太阳能电池板和太阳能充放电电路组成,用于为无线加速度传感器节点1、杆塔监测分机2和GPRS通信模块3提供稳定的5V及12V电源。各无线加速度传感器节点1都具有独立的控制器

7、和电源,多个无线加速度传感器节点1组成传感器网络。本发明监测系统中杆塔监测分机2的结构,如图2所示,涉及微解决器单元6,微解决器单元6分别与电源模块5、ZigBee通信模块7、数据存储单元8、液晶显示单元9和舞动信息信号解决单元17相连接,舞动信息信号解决单元17分别与雨量传感器10、压力传感器11、角位移传感器12、温湿度传感器13、风速传感器14、风向传感器15和日照强度传感器16相连接。 杆塔监测分机2重要完毕输电线路周边环境气象信息以及杆塔线路环境温湿度、风速、风向、雨量、日照强度、杆塔处线路的拉力和风偏角等信息的采集,并将接受到的无线加速度传感器节点1发送的数据进行解决、打包,并存储

8、重要信息,同时控制液晶显示和GPRS通讯等。杆塔监测分机2中的微解决器单元6选用TI公司的16位MSP430F247微解决器,具有超低功耗和丰富的外设,具有1个带有3个比较/捕获通道的16位定期器A和1个带有7个比较/捕获通道的16位定期器B,微解决器内部集成了多个12位ADC模块,可以快速解决各种数字信号、模拟信号以及脉冲信号,该微解决器除了活动模式外尚有4种低功耗模式,在实现高性能的同时,减少系统功耗。 温湿度传感器13选用瑞士Sensirion公司基于CMOSensTM技术的温湿度传感器SHT1x,该传感器将CMOS芯片技术与传感器技术相结合,并带有工业标准的IC总线数字输出接口,湿度值

9、和温度值的输出分辨率分别为14位和12位,并可编程为12位和8位。该传感器测量时的电流消耗为550A,平均为28A,休眠时为3A,并且具有很好的稳定性。风速传感器14采用低门槛值(0.4m/s)、测量范围075m/s 的三杯式光电风速传感器WAA15,其输出信号为脉冲信号,信号频率与风速成正比,通过单位时间内的计频完毕风速测量。风向传感器15为单翼风标,风标转动时,带动格雷码盘(七位,分辨率为2.80)转动,格雷码盘每转动2.80,光电管组产生新的七位并行格雷码数字信号输出。雨量传感器10采用翻斗雨量传感器,输出脉冲信号。角位移传感器12和压力传感器11分别输出05V的模拟信号,该模拟信号直接

10、输入接到微解决器单元6的模拟I/O进行解决。日照强度传感器16采用锦州阳光科技发展有限公司的TBQ-2传感器,用于测量日照强度,该传感器输出020mV的模拟电压信号,通过多极放大后调制为02.5V的模拟信号。杆塔监测分机2的微解决器单元6为3.3V低功耗系统,很多输入输出信号不匹配,为此系统中采用了大量的保护电路,同时由于工作在2.4G频率带上的ZigBee节点,系统采用了高频干扰,在杆塔监测分机2中采用了多种抗干扰措施,保证了杆塔监测分机2工作的稳定性。本发明监测系统中无线加速度传感器节点1的结构,如图3所示,涉及相连接的ZigBee通信模块7和加速度传感器18,ZigBee通信模块7涉及无

11、线单片机7-1,无线单片机7-1的引脚16、引脚17和引脚18分别与加速度传感器18的引脚12、引脚10和引脚8相连接,无线单片机7-1的引脚44与电容C1串联,电容C1接地,无线单片机7-1的引脚43与电容C2串联,电容C2接地,引脚44与引脚43之间并联有晶振1;无线单片机7-1的引脚19与电容C5串联,电容C5接地,无线单片机7-1的引脚21与电容C4串联,电容C4接地;无线单片机7-1的引脚32分别与电感L2的一端和印刷版微波传输线7-3的一端相连接,电感L2的另一端与无线单片机7-1的引脚34相连接,印刷版微波传输线7-3的另一端分别与电感L2的另一端、引脚34和电感L3的一端相连接

12、,电感L3的另一端与电容C3串联,电容C3与外部天线7-2相连接。加速度传感器18采用三轴加速度传感器ADXL330。三轴加速度传感器ADXL330功耗低、灵敏度高,最大测量范围为+/-3g,X轴和Y轴的带宽为0.51600Hz,Z轴带宽为0.5550Hz;ZigBee通信模块7采用TI公司的低功耗芯片CC2430,工作时的电流损耗为27mA,在接受和发射模式下,电流损耗分别低于27 mA 或25 mA。可提供模拟电压输出,能测量出任意时刻输出导线沿X轴、Y轴和Z轴三个方向的位移加速度分量。ZigBee通信模块7基于TI公司的低功耗芯片CC2430,采用了非平衡天线和与其相连接的非平衡变压器。

13、非平衡变压器由电感L1、电感L2和印刷版微波传输线7-3组成,能满足RF输入/输出匹配电阻(50)的规定,为了进一步提高无线传输距离,增长了接受天线,该接受天线由电容C3、电感L3H和外部天线7-3构成;晶振1、电容C1和电容C2 为无线单片机7-1提供32.768KHz的时钟源;晶振2、电容C4和电容C5为无线单片机7-1提供32M的时钟源。加速度传感器18三个方向的输出引脚12、引脚10和引脚8分别接到无线单片机7-1的模拟输入引脚16、引脚17和引脚18,实现了无线单片机7-1对加速度传感器18产生的信号数据的采集。无线加速度传感器节点1由两节串联的1.5伏电池提供3伏电源。在一段输电线

14、路上布置若干个无线加速度传感器节点1,各无线加速度传感器节点1共同组成树状的无线加速度传感器网络,该传感器网络中,路由器节点和终端节点定期/实时发送各自的三个方向的加速度分量至杆塔监测分机2的接受模块(协调器节点),同时各路由器节点还负责该传感器网络中数据的中继。协调器节点一方面负责整个网络的维护工作,另一方面将接受的数据发送给杆塔监测分机2的微解决器单元6。本发明监测系统中电源模块5的结构,如图4所示,涉及依次并联设立的太阳能电池5-1、电阻R1、充电保护电路5-2、场效应管A5-3、+12V蓄电池5-4、放电保护电路5-6、定期断电电路5-7和+5V电源稳压器5-8,太阳能电池5-1的正极

15、和负极分别与+12V蓄电池5-4的正极和负极相连接,太阳能电池5-1和+12V蓄电池5-4的负极接地,太阳能电池5-1的正极与+12V蓄电池5-4的正极之间串联有二极管D1,二极管D1位于+12V蓄电池5-4和场效应管A5-3之间,二极管D1的负极与+12V蓄电池5-4的正极相连接,场效应管A5-3还与充电保护电路5-2相连接,电阻R2与放电保护电路5-6之间连接有场效应管B5-5,场效应管B5-5与+12V蓄电池5-4的负极相连接。本监测系统在野外工作,很难取电,电源模块5采用太阳能加蓄电池的供电模式,为系统提供稳定的5伏和12伏电源。并采用了充电保护电路5-2、放电保护电路5-6和定期断电

16、复位电路5-7。二极管D1用于阴雨天和夜晚无太阳光时,+12V蓄电池5-4对太阳能电池5-1放电;电阻R1和电阻R2 为压敏电阻,用于防雷击保护;场效应管A5-3用于充电控制,场效应管B5-5用于放电控制。GPRS通信模块3支持双频GSM/GPRS,符合ETSI GSM Phase 2+标准,数据终端永远在线,支持A5/1&A5/5加密算法、透明数据传输与协议转换,支持虚拟数据专用网、短消息数据备用通道(选项),支持动态数据中心域名和IP地址,支持RS-232/422/485或以太网接口,可通过Xmodem协议进行软件升级,并具有自诊断、告警输出和抗干扰性能,适于电磁环境恶劣环境中应用的需求,该模块采用先进电源技术,供电电源适应范围宽,稳定性较好,选配防潮外壳,适合室外使用。可直接与监控终端设备连接,实现GPRS拨号上网功能。该模块性能稳定,足以满足系统设计

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 活动策划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号