高中生物基因工程的应用素材1浙教版选修3

上传人:cn****1 文档编号:560937712 上传时间:2022-11-21 格式:DOC 页数:4 大小:229.50KB
返回 下载 相关 举报
高中生物基因工程的应用素材1浙教版选修3_第1页
第1页 / 共4页
高中生物基因工程的应用素材1浙教版选修3_第2页
第2页 / 共4页
高中生物基因工程的应用素材1浙教版选修3_第3页
第3页 / 共4页
高中生物基因工程的应用素材1浙教版选修3_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《高中生物基因工程的应用素材1浙教版选修3》由会员分享,可在线阅读,更多相关《高中生物基因工程的应用素材1浙教版选修3(4页珍藏版)》请在金锄头文库上搜索。

1、第3节 基因工程的应用【备课资料】1转基因生物与目的基因的关系转基因生物目的基因目的基因从何来抗虫棉Bt毒蛋白基因苏云金芽孢杆菌抗真菌立枯丝核菌的烟草几丁质酶基因和抗毒素合成基因抗盐碱和干旱作物调节细胞渗透压的基因耐寒的番茄抗冻蛋白基因鱼抗除草剂大豆抗除草剂基因增强甜味的水果降低乳糖的奶牛甜味基因肠乳糖酶基因生产胰岛素的工程菌人胰岛素基因人2限制性内切酶及其特点在生物体内有一类酶,它们能将外来的DNA切断,即能够限制异源DNA的侵入并使之失去活力,但对自身的DNA却无损害。科学家还注意到,这种酶是从DNA分子内部切断DNA的,因此,这种酶称做限制性内切酶。美国生物学家内森斯和史密斯因发现了限制

2、性内切酶而获得1978年度的诺贝尔生理学或医学奖。限制性内切酶通常能识别46个碱基长度的特定DNA序列,并能以特定的模式剪切DNA链。一般来说,被识别的DNA序列是回文序列。这种序列的特点是,当从左右两端分别阅读这段双链DNA的碱基序列时,双链上的碱基序列是相同的。按照切割的方式,限制性内切酶可以分为错位切和平切两种,它们分别产生黏性末端和平末端。目前大约已有500种限制性内切酶,这些酶的命名方式与EcoRI一样遵循统一的规则。第一个字母是分离出此酶的细菌属名的第一个字母,后两个字母为种名的前两个字母,小写,株系数字通常都省略,罗马数字用来表示从同一个细菌中分离出的不同的限制性内切酶。如Hpa

3、I和Hpa就是从同一种细菌中分离出来的第一种和第二种内切酶。几种常用的限制性内切酶及其酶切位点如下表: 几种常用限制性内切酶及其酶切位点限制性内切酶识别位点限制性内切酶识别位点EcoRIXbaIXhoINdeIGAATTCTCTAGACTCGAGCATATGApaIBgClaISmaIGGGCCCAGATCTATCGATCCCGGG3 基因工程中的运载体 在基因操作过程中使用运载体有两个目的:一是用它作为运载工具,将目的基因转移到宿主细胞中去;二是利用它在宿主细胞内对目的基因进行大量的复制(称为克隆)。现在所用的运载体主要有两类:一类是细菌细胞质的质粒,它是一种相对分子质量较小、独立于染色体D

4、NA之外的环状DNA(一般有1200 kb左右,kb为千碱基对),有的一个细菌中有一个,有的一个细菌中有多个。质粒能通过细菌间的接合由一个细菌向另一个细菌转移,可以独立复制,也可整合到细菌染色体DNA中,随着染色体DNA的复制而复制。另一类运载体是噬菌体或某些病毒等。现在人们还在不断寻找新的运载体,如叶绿体或线粒体DNA等也有可能成为运载体。作为运载体必须具有三个条件:在宿主细胞中能保存下来并能大量复制;有多个限制酶切点,而且每种酶的切点最好只有一个,如大肠杆菌pBR322就有多种限制酶的单一识别位点,可适于多种限制酶切割的DNA插入;有一定的标记基因,便于进行筛选。如大肠杆菌的pBR322质

5、粒携带氨苄青霉素抗性基因和四环素抗性基因,就可以作为筛选的标记基因。一般来说,天然运载体往往不能满足上述要求,因此需要根据不同的目的和需要,对运载体进行人工改建。现在所使用的质粒载体几乎都是经过改建的。质粒 质粒习惯上用来专指细菌、酵母菌和放线菌等生物中染色体(或拟核)以外的DNA分子,它们在细菌中以独立于染色体或拟核之外的方式存在。即使细菌细胞不含质粒,也可以正常地生活。质粒的存在通常不会对寄主细胞产生不利影响,有时还会为寄主细胞提供新的遗传特性。例如,有些质粒携带帮助自身从一个细胞转入另一个细胞的信息;有些质粒含有对某种抗生素具有抗性的基因;还有一些携带的是参与或控制一些不同寻常的代谢途径

6、的基因,即降解质粒。质粒的大小不定,小的不到1 kb,大的超过500 kb。每个质粒都包括与DNA复制起始有关的一段序列,使质粒DNA能够在宿主细胞中复制。每个细胞中的质粒数主要决定于质粒本身的复制特性。按照复制性质,可以把质粒分为两类:一类是严紧型质粒,当细胞染色体复制一次时,质粒也复制一次,每个细胞内有l一2个质粒;另一类是松弛型质粒,当染色体复制停止后仍然能继续复制,每个细胞内一般有20个左右的质粒。在基因工程中,常用人工构建的质粒作为载体。人工构建的质粒可以集多种有用的特征于一体,如含多种单一酶切位点、抗生素耐药性等。常用的人工质粒运载体有pBR322、pSCl01等。作为载体的质粒通

7、常需要具有以下特点:第一,能够在细菌细胞内自主复制,并以多拷贝形式存在,以便于实验操作;第二,要有一个或多个选择标记,用于转化细菌的筛选。在基因工程操作中,用肉眼无法看到载有目的基因的载体是否真正进入细胞,这时,标记基因就为鉴别和筛选提供了标记。所谓的选择标记指的就是抗生素抗性基因,如抗四环素或抗氨苄青霉素基因。只要在培养基中加入四环素或氨苄青霉素就能够筛选已转化的细胞。当质粒存在于细菌细胞时,细菌便获得了抗生素抗性,用来区别未转化的细胞;第三,质粒的相对分子质量要小,以便于操作;最后,需要有适于外源DNA片段插入的限制性内切酶识别位点。农杆菌 用来作为植物遗传工程载体的主要是根瘤农杆菌和发根

8、农杆菌。根瘤农杆菌和发根农杆菌同属于根瘤菌科,革兰氏阴性菌。它们可以将自己的一部分DNA转移给植物,进而转化植物细胞,同时农杆菌能从植物细胞中获得营养物质。这两种农杆菌之所以能够转化植物基因,主要是因为它们携带有诱瘤质粒,简称丁i质粒。该质粒上有一段DNA,称为T-DNA,它能转移并整合进植物基因组中,并导致植物冠瘿瘤的形成。近年来应用丁i质粒介导植物基因转移已获得一些转化突变体。实验结果表明,外源基因不但能在转化的组织和再生植株中表达,而且能在有性世代中稳定地遗传。4目的基因的制备 所谓目的基因就是人们所需要转移或改造的基因。获取目的基因的方法很多,可以归纳为以下几种。鸟枪法 这种方法类似于

9、鸟枪发射散弹。具体的做法是:用若干个合适的限制酶处理一个DNA分子,将它切成若干个DNA片段。这些片段的长度相当于或略大于一个基因。然后,将这些不同的DNA片段分别与适当的载体结合,形成重组DNA,再将它导入到相应的营养缺陷型细菌中。例如,当我们要提取维生素B1合成酶基因时,就要采用维生素B1的营养缺陷型细菌(它在不含维生素B1的培养基上不能生长)。把整合了不同DNA片段的营养缺陷型细菌分别接种到不含维生素B1的培养基上进行培养,只有那些整合了含有维生素B1合成酶基因的DNA片段的细菌才能正常生长。最后,把这些细菌中的这段DNA分离出来,再进行一系列的操作,就可以获得维生素B1合成酶基因。这种

10、方法的缺点是专一性较差,分离出来的有时并非一个基因,但由于这种方法操作简便,所以现在仍然广泛采用。反转录法 这种方法是在核糖体合成多肽的旺盛时期,首先把含有目的基因的mRNA的多聚核糖体提取出来,分离出mRNA,然后以mRNA为模板,用反转录酶合成一个互补的DNA,即cDNA单链,再以此单链为模板合成出互补链,就成为双链DNA分子。这种方法专一性强,但是操作过程比较麻烦,特别是mRNA很不稳定、生存时间短,所以要求的技术条件较高。根据已知的氨基酸序列合成DNA 这种方法是建立在DNA序列分析基础上的。当把一个基因的核苷酸序列搞清楚后,可以按图纸先合成一个个含少量(1015个)核苷酸的DNA片段

11、,再利用碱基对互补的关系使它们形成双链片段,然后用连接酶把双链片段逐个按顺序连接起来,使双链逐渐加长,最后得到一个完整的基因。这种方法专一性最强,现在用计算机自动控制的DNA合成仪,进行基因合成,使基因合成的效率大大提高。但是这种方法目前仅限于合成核苷酸对较少的一些简单基因,而且必须事先把它们的核苷酸序列搞清楚。对于许多复杂的、目前尚不知道核苷酸序列的基因就不能用这种方法合成,只能用前两种方法或其他方法分离或合成。这种合成基因的方法还有一个很大的优点,就是可以人工合成自然界不存在的新基因,使生物产生新的性状以满足人类需求。因此,这一方法今后将随着技术的不断改进而得到越来越广泛的应用。5转化把纯

12、化的DNA导入细菌细胞的过程称为转化。原核细胞的转化过程就是导入外源DNA的过程。对于大肠杆菌来说,人们一般采用先用冰冷的CaCl2处理,然后置于42 0C高温下帮助其吸收外源的DNA,这种方法的最大转化频率为10-3,其效率是每微克DNA一般可以转化107108个细胞。目前CaCl2转化方法的机制尚不清楚,可能是细胞壁被打了一些孔,DNA分子从这些孔洞中进入细胞,而这些孔洞随后又可以被宿主细胞修复。可以接受DNA的细胞称为感受态细胞。大肠杆菌需要诱导才能变成感受态细胞,而有些细菌细胞则在自然条件下,或是在改变培养基和其他培养条件下就可变成感受态细胞。6基因诊断与基因治疗基因治疗的体内治疗:即

13、直接将基因导入体内的治疗方法。可分为:(1)异位导入,将基因导入非病变的细胞,如皮下,肌肉等;(2)原位导入,将基因导入直接病变的部位,如肿瘤细胞、骨髓细胞等。基因治疗的体外治疗(回输):即将病人的部分组织或细胞取出,在体外培养导入基因后,再回输入体内。体细胞基因治疗:是指将正常基因转移到体细胞,使之表达基因产物,以达到治疗的目的。这种方法的理想措施是将外源正常基因导入靶体细胞内染色体的特定基因座位,用健康的基因确切地替换异常的基因,使其发挥治疗作用,同时还须减少随机插入引起新的基因突变的可能性。生殖细胞的基因治疗:是将正常基因转移到患者的生殖细胞(精细胞、卵细胞)或中早期胚胎,使 其可以发育

14、成正常个体。显然,这是理想的治疗方法。实际上,这种靶细胞的遗传修饰,至今尚无实质性进展。基因的这种转移一般只能用显微注射法,然而这种方 法效率不高,并且只适用排卵周期短而次数多的动物,很难适用于人类。而在人类中将基因转移到生殖细胞,并使其世代遗传,又会涉及到伦理学问题。因此,就人 类而言,目前多不考虑生殖细胞的基因治疗途径。7.病毒如何将治疗基因导入特定的组织细胞内?有人发现,因缺少E1区而致复制缺陷的腺病毒,可在表达E1基因的细胞中繁殖。后来证明,载 有外源DNA的复制缺陷腺病毒与没有载外源DNA的复制缺陷腺病毒具有相同的繁殖特点,因而它可以作为基因导入的载体。因为用这种有复制缺陷的病毒作载

15、 体,一般不会因病毒大量繁殖而失控。1993年美法等国成功采用腺病毒载体进行心、脑、肺、肝内胆管和肌肉组织的体内基因转移,它代表了基因治疗的新方 向。图1-1是人的外源基因包装在缺陷型反转录病毒中,感染细胞经培养后再输入病人体内进行治疗的示意图。图1-1 以病毒为载体进行基因治疗示意图最近,美国科学家设计了一个新的腺病毒载体(图1-2):用一个化学连接器,即赖氨酸链,将 DNA拴在病毒外壳上。赖氨酸链和病毒外壳之间,还需要用一个该病毒的抗体进行连接。这样组成的运输器,可将治疗基因导入细胞核,使宿主基因与治疗基因共 同表达。这个新病毒载体称为腺病毒多赖氨酸DNA复合体。图1-2 新型腺病毒载体示意图w.w.w.g.k.x.x.c.o.m - 1 -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号