电源噪声测试

上传人:夏** 文档编号:560798389 上传时间:2023-06-04 格式:DOCX 页数:5 大小:251.52KB
返回 下载 相关 举报
电源噪声测试_第1页
第1页 / 共5页
电源噪声测试_第2页
第2页 / 共5页
电源噪声测试_第3页
第3页 / 共5页
电源噪声测试_第4页
第4页 / 共5页
电源噪声测试_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《电源噪声测试》由会员分享,可在线阅读,更多相关《电源噪声测试(5页珍藏版)》请在金锄头文库上搜索。

1、示波器基础系列之五-电源噪声测试-about power ripple testing电源噪声测试美国力科公司深圳代表处张昌骏当今的电子产品,信号速度越来越快,集成电路芯片的供电电压也越来越小, 90年代芯片的供电通常是5V和3.3V,而现在,高速IC的供电通常为2.5V, 1.8V 或1.5V等等。对于这类电压较低直流电源的电压测试(简称电源噪声测试), 本文将简要讨论和分析。在电源噪声测试中,通常有三个问题导致测量不准确 示波器的量化误差 使用衰减因子大的探头测量小电压 探头的GND和信号两个探测点的距离过大衰幽涪后館愷号衣生4蛰童比间礙=淇黄2吃特的分曙率!图一:示波器DC的量化误差示波

2、器存在量化误差,实时示波器的ADC为8位,把模拟信号转化为2的 8次方(即256个)量化的级别,当显示的波形只占屏幕很小一部分时,则增大 了量化的间隔,减小了精度,准确的测量需要调节示波器的垂直刻度(必要时使 用可变增益),尽量让波形占满屏幕,充分利用ADC的垂直动态范围。在图一 中蓝色波形信号(C3)的垂直刻度是红色波形(C2)四分之一,对两个波形的 上升沿进行放大(F1=Z00M(C2), F2=ZOOM(C3),然后对放大的波形作长余 辉显示,可以看到,右上部分的波形F1有较多的阶梯(即量化级别),而右下 部分波形F2的阶梯较少(即量化级别更少)。如果对C2和C3两个波形测量一 些垂直或

3、水平参数,可以发现占满屏幕的信号C2的测量参数统计值的标准偏差 小于后者的。说明了前者测量结果的一致性和准确性。通常测量电源噪声,使用有源或者无源探头,探测某芯片的电源引脚和地引 脚,然后示波器设置为长余辉模式,最后用两个水平游标来测量电源噪声的峰峰 值。这种方法有一个问题是,常规的无源探头或有源探头,其衰减因子为10, 和示波器连接后,垂直刻度的最小档位为20mV,在不使用DSP滤波算法时,探 头的本底噪声峰峰值约为30mV。以DDR2的1.8V供电电压为例,如果按5%来 算,其允许的电源噪声为90mV,探头的噪声已经接近待测试信号的1/3,所以,用10倍衰减的探头是无法准确测试1.8V/1

4、.5V等小电压。在实际测 试1.8V噪声时,垂直刻度通常为5-10mV/div之间。1/3,所以,用10倍衰减的探头是无法准确测试1.8V/1.5V等小电压。在实 际测试1.8V噪声时,垂直刻度通常为5-10mV/div之间。另外,探头的GND和信号两个探测点的距离也非常重要,当两点相距较远, 会有很多图二:探头上的信号电流回路EMI噪声辐射到探头的信号回路中(如图二所示),示波器观察的波形包括 了其他信号分量,导致错误的测试结果。所以要尽量减小探头的信号与地的探测 点间距,减小环路面积。團二:探头上的信号电流图三:力科PP066探头示意图对于小电源的电压测试,我们推荐衰减因子为1的无源传输线

5、探头。使用这 类探头时,示波器的最小刻度可达2mV/di v,不过其动态范围有限,偏移的可调 范围限制在+/-750mV之间,所以,在测量常见的1.5V、1.8V电源时,需要隔直 电路(DC-Block)后再输入到示波器。如图三为力科PP066探头,该探头的地与信号的间距可调节,探头的地针可 弹性收缩,操作起来非常方便。通过同轴电缆加隔直模块后连接到示波器通道上。图二:力科PP066探头zr青也可以把同轴电缆剥开,直接把电缆的信号和地焊接到待测试电源的电源和 地上。在图四中把SMA接头的同轴电缆的一段剥开,焊接到了电脑主板的DDR2 供电的1.8V上面,测量其电源噪声。图四:测量某电脑主板DD

6、R2的1.8V的电源噪声在电源噪声测试中,还存在示波器通道输入阻抗选择的争议。示波器的通道 有DC50/DC1M/AC1M三个选项可选(对于高端示波器,可能只有DC50 一个选 项)。一些工程师认为应该使用1M欧的输入阻抗,另一些认为50欧的输入阻 抗更合适。在测试中我们发现:如果使用1倍衰减的探头测试,当示波器通道输入为1M 欧时,通常其测量出的电源噪声大于50欧输入阻抗的。原因是:高频电源噪声从同轴电缆传输到示波器通道后,当示波器输入阻抗是50欧时,同轴电缆的特 性阻抗50欧与通道的完全匹配,没有反射;而通道输入阻抗为1M欧时,相当 于是高阻,根据传输线理论,电源噪声发生反射,这样,导致1

7、M欧输入阻抗是 测试的电源噪声高于50欧的。所以,测量小电源噪声推荐使用50欧的输入阻抗。在准确测量到电源噪声的波形后,可以计算出噪声的峰峰值,如果电源噪声 过大,则需要分析噪声来自哪些频率,这时,需要对电源噪声的波形进行FFT, 转化为频谱进行分析。FFT中信号时间的长度决定了 FFT后的频谱分辨率,在 力科示波器中,支持业界最大的128M个点的FFT,能准确定位电源噪声来自于 哪些频率(其频谱分辨率是同类仪器的40倍以上)。Fib Vcrtitnl TifflflbSfifr T闻pdF Di泊邓 CUrSMf Maifdre MMI仙闭空韵丄巴lm 威-谱li. L .!.一.-一1 l

8、l 1s Ill 1rii 1|31AlriLadJi j 1 ILJ , ll wUjgAiJ1-1MciwcPI 遊沁KfFJ卩f rrc阿|C3)Situs-Jin由删50皿颍谱中展大值在31一 EkHzPI FFTCC3Iu.wrvfigawKIT MSb1.0能样e你lonom: 凸伞-FarawTE gIfAXa 1 2533US图五:测量某3.3V的电源噪如图五所示为某光模块的3.3V电源的噪声。其噪声的频谱最高点的频率为 311.6KHZ。这个光模块输出的1.25Gbps光信号的抖动测试中发现了同样的 312KHz的周期性抖动。在图六中可以看到,把1.25G串行信号的周期性抖动

9、分 解后(Pj breakdown菜单),发现312KHz的周期性抖动为63.7皮秒,在眼图中也 明显可以观察到抖动。通过这个案例说明,电源噪声很可能导致一些高速信号的 眼图和抖动变差。对电源噪声进行频谱分析,能有效定位噪声的来源,指引调试 的方向。图六:某1.25Gbps信号的抖动和眼图测试结果在使用示波器测量电源噪声时,为了保证测量精度,需要选择足够的采样率和采 集时间。推荐采样率在500MSa/s以上,这样奈科斯特频率为250M,可以测量到 250MHz以下的电源噪声,对于目前最普及的板级电源完整性分析,250M的带 宽已足够。低于这个频率的噪声可以使用陶瓷电容、PCB上紧耦合的电源和地 平面来滤波。而高于这个频率的只能在封装和芯片级的去耦措施来完成了。波形的采集时间越长,则转化为频谱后的频谱分辨率(即delta f)越小。通 常我们的开关电源工作在10KHz以上,如果频谱分辨率要达到100Hz的话,至 少需要采集10ms长的波形,在500MSa/s采样率时,示波器需要500MSa/s * 10 ms =5M pts的存储深度。总结:本文简要介绍了电源噪声测试中的注意事项和分析方法。欢迎读者与笔者 联系,交流电源噪声测试的技术。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号