浙师大通识课纳米化学

上传人:枫** 文档编号:559992913 上传时间:2023-10-23 格式:DOC 页数:10 大小:114.01KB
返回 下载 相关 举报
浙师大通识课纳米化学_第1页
第1页 / 共10页
浙师大通识课纳米化学_第2页
第2页 / 共10页
浙师大通识课纳米化学_第3页
第3页 / 共10页
浙师大通识课纳米化学_第4页
第4页 / 共10页
浙师大通识课纳米化学_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《浙师大通识课纳米化学》由会员分享,可在线阅读,更多相关《浙师大通识课纳米化学(10页珍藏版)》请在金锄头文库上搜索。

1、纳米微粒的基本理论: 电子能级的不连续性:久保(Kubo)理论和电子能级的统计学和热力学。量子尺寸效应:当例子尺寸下降到某一值时,金属费米能级附近的垫子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象均称为量子尺寸效应。能带理论表明:金属费米能级附近电子能级一般是连续的,这一点只有在高温或宏观尺寸情况下才成立。 小尺寸效应:当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特

2、征呈现新的小尺寸效应。表面效应:纳米微粒尺寸小表面能高位于表面的原子占相当大的比例。这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加,这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性,例如金属的纳米粒子在空气中会燃烧,无机的纳米粒子暴露在空气中会吸附气体,并与气体进行反应。这种表面原子的活性不但引起纳米粒子表面原子输运和构型变

3、化,同时也引起表面电子自旋构象和电子能谱的变化。 宏观量子隧道效应:微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦具有隧道效应,称为宏观量子隧道效应。 库伦堵塞与量子隧穿:当体系的尺度进入到纳米级(一般金属粒子为几个纳米,半导体粒子为几十纳米),体系是电荷“量子化”的,即充电和放电过程是不连续的,充入一个电子所需的能量Ec为e2/2c,e为一个电子的电荷,c为小体系的电容,体系越小,c越小,Ec越大。我们把这个能量称为库仑赌赛能。把小体系这种单电子输运行为称为库仑堵塞效应。库仑堵塞:照片中的黑体字 量子隧穿:如果两个量子点通

4、过一个结连接起来,一个量子点的单个电子穿过能垒到另一个量子点上的行为。 介电限域效应:介电限域是纳米颗粒分散在异质介质中由于界面引起的体系介电增强的现象,这种介电增强通常称为介电限域,主要来源于微粒表面和内部局域强的增强。当介质的折射率比微粒的折射率相差很大时,产生了折射率边界,这就导致微粒表面和内部的场强比入射场明显增加,这种局域强的增强称为介电限域 。一般来说,过渡态金属氧化物和半导体微粒都可能产生介电限域效应。 纳米微粒热学性质:(简答题)由于颗粒小,纳米颗粒的表面能高,比表面原子数多,表面原子最近邻配位数不全,原子活性大,体积远小于大块材料,因此纳米粒子熔化时,所需增加的内能小得多,这

5、就使得纳米微粒的熔点急剧下降。纳米TiO2在773K加热呈现出明显的致密化,而晶粒仅有微小的增加,而通常大晶粒样品在1400K下烧结才能出现明显的致密化趋势。通常纳米晶粒的起始长大温度随粒子的减小而降低,这是由于纳米粒子越小,去比表面能越高,颗粒越不稳定,通过长大而降低其表面能。如粒径分别为35nm,15nm,8nm的Al2O3粒子快速长大的起始温度分别为1423K,1273K,1073K。 磁学性质:超顺磁性:纳米颗粒尺寸小到一定临界值时进入超顺磁状态。例如-Fe,Fe3O4和-Fe2O3粒径分别为5nm,16nm,20nm时变成顺磁体。磁化率:(1)纳米微粒的磁性与它所含的总电子数的奇偶性

6、密切相关。电子数为奇或偶数的粒子磁性有不同温度特点。(2) 电子数为奇数的粒子集合体的磁化率服从居里-外斯定律,量子尺寸效应使磁化率遵从d-3规律;而电子数为偶数的系统,x正比KbT,并遵从d2规律。它们在高场下为泡利顺磁性。光学性能:(简答题)纳米粒子的表面效应和量子尺寸效应对纳米微粒的光学特性有很大的影响,甚至使纳米微粒具有同样材质的宏观大块物体不具备的新的光学特性。(1) 宽频带强吸收:1.纳米金属粒子对可见光的反射率极低而呈黑色。2.纳米氮化硅、SiC及Al2O3粉对红外辐射有一个宽频带强吸收谱。3.许多纳米微粒,例如,ZnO,Fe2O3和TiO2等,对紫外光有强吸收作用,而亚微米级T

7、iO2的对紫外光几乎不吸收。(2) 蓝移和红移现象:1. 由于不同粒径的CdS纳米微粒的吸收光谱看出,随着微粒尺寸的变小而有明显的蓝移。2. 体相CdS的禁带宽度较窄,其吸收带在近红外区。但是CdS体相中的激子玻尔半径较大(大于10nm),更容易达到量子限域。当其尺寸小于3nm时,吸收光谱移至可见光区(3) 蓝移的解释:一方面是由于量子尺寸效应,即由于颗粒尺寸下降使能隙变宽(电子跃迁需要更高的能量),这就导致光吸收带移向短波方向;另一方面是由于表面效应。由于纳米微粒颗粒小,大的表面张力使晶格发生畸变,晶格常熟变小。对纳米氧化物和氮化物小粒子研究表明,第一近邻和第二近邻的距离变短。键长的缩短导致

8、纳米微粒的键本征振动频率增大,结果使红外光吸收带移向了高波数。(4) 红移的发生:粒径的减小使颗粒内部的内应力增加,这种内应力的增加也会导致能带结构的变化,电子波函数重叠加大,结果带隙、能级间距变窄,使其光吸收发生红移;最终的效应取决于蓝移和红移竞争的结果。 丁达尔效应:丁达尔效应与胶体粒子的大小和入射光波长有关。当胶体粒子的尺寸大于入射光波长时,光投射到粒子上就被反射。而当粒子尺寸小于入射光波长时,光波就可以发生散射,散射出来的光,形成乳光。由于纳米微粒尺寸比可见光小得多,所以胶体粒子应以散射为主。 乳光的特性:(简答题)1.乳光强度与粒子的体积平方成正比。对于小分子溶液,由于分子体积很小,

9、虽有乳光,但很微弱;而悬浮体的粒子大于可见光波长,只有反射光而没有乳光;只有纳米胶体粒子形成的溶胶才能产生丁达尔效应。2.乳光强度与入射光的波长的四次方成反比,故入射光的波长越短,散射越强。如白光照射在溶胶上,由于其中蓝光与紫光的散射较强,因此侧面的散射光呈现淡蓝色,而透射光呈现橙红色。3.分散相与分散介质的折射率相差越大,粒子的散射光越强,因此对于分散相和分散介质间没有亲和力或只有很弱亲和力的溶胶(憎液溶胶),由于分散相与分散介质间有明显的界限,二者的折射率相差很大,乳光很强,丁达尔效应很明显。4.乳光强度与单位体积内胶体粒子数N成正比。纳米微粒悬浮液及其动力学性质 纳米微粒悬浮液及其动力学

10、性质:布朗运动是由于介质分子热运动造成的扩散:在有浓度差时,由于微粒的布朗运动引起的物质迁移现象。微粒愈大热运动速度愈小。 沉降和沉降平衡:对于质量较大的胶粒来说,重力作用是不能忽视的。如果粒子比重大于液体,因重力作用悬浮在流体中的微粒下降;当沉降速度与扩散速度相等时,体系达到平衡状态,即沉降平衡;粒子的质量越大,其浓度随高度而引起的变化也越大,即其重力作用越明显。一般来说,溶胶中含有各种粒径大小不同的粒子时,当体系达到平衡时,溶胶上部的平均粒子粒径要比底部的小。表面活性及敏感特性随纳米微粒粒径减小,比表面积增大,表面原子数增多,表面原子配位不饱和导致大量的悬空键和不饱和键产生,这就使得纳米微

11、粒具有高的表面活性;金属纳米微粒作催化剂具有高的表面活性和高的反应选择性。由于纳米微粒具有大的比表面积,高的表面活性,对周围环境十分敏感,如光、温度、气氛、湿度等,因此可用作各种气体传感器。力学性质的应用纳米结构的材料强度由于粒径成反比。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高使其在难以加工材料刀具领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛应用于航空、航天、航海、油钻探等恶劣环境下使用热学性质的应用纳米材料的比热和热膨胀系数都大于同类粗晶体材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的

12、机械耦合性能应用方面有其广泛的应用前景。 纳米催化剂的应用:纳米颗粒的比表面积大、表面反应活性高、表面活性中心多、催化效率高、吸附能力强的优异性使其在化工催化方面有着重要的应用。纳米粉材如铂黑、银、氧化铝和氧化铁等已直接用作高分子聚合物氧化、还原及合成反应的催化剂,大大提高了反应效率。使用纳米镍粉作为反应催化剂的火箭固体燃料,燃烧效率可提高100%。用硅载体镍催化丙酮的氧化反应,当镍的粒径在5nm以下,反应选择性发生急剧变化,醛分解反应得到有效控制,生成酒精的转化率迅速增大。 纳米材料的制备方法:纳米微粒的制备方法分类:(简答题)1.根据是否发生化学反应,纳米微粒的制备方法通常分为两大类:物理

13、方法和化学方法2.根据制备状态的不同,制备纳米微粒的方法可分为气相法、液相法和固相法等3.按反应物状态分为干法和湿法。 大部分方法具有粒径均匀、粒度可控、操作简单等优点;有的也存在可生产材料范围较窄,反应条件较苛刻,如高温高压、真空等缺点。气相法分为化学气相法(气相分解法、气相合成法、气-固反应法)和物理气相法(气体冷凝法、氢电弧等离子体法、溅射法、真快沉积法、加热蒸发法、混合等离子体法)液相法分为沉淀法(共沉淀法、化合物沉淀法、水解沉淀法)、水热法、溶胶凝胶法、冷冻干燥法、喷雾法。固相法分为粉碎法(干式粉碎、湿式粉碎)、热分解法、固相反应法、其他方法。 气相法制备纳米颗粒:1.定义:气相法指

14、直接利用气体或者通过各种手段将物质变为气体,使之在气体状态下发生物理或化学反应,最后在冷却过程中凝聚长大形成纳米微粒的方法。2.气相法主要具有以下特点:表面清洁、粒度整齐粒径分布窄、粒度容易控制、颗粒分散性好 气体冷凝法:1.定义:气体冷凝法是在低压的氩、氮等惰性气体中加热金属,使其蒸发后形成超微粒或纳米微粒的方法。2.原理:整个过程是在超高真空室内进行,通过分子涡轮使其达到0.1pa以上的真空度,然后充入低压(约为2Kpa)的纯净惰性气体(He或Ar,纯度为99.9996%)。 纳米粉体粒径的控制:1.可通过调节惰性气体压力,温度,原子量;2.蒸发物质的分压即蒸发温度或速率等于控制纳米粒子的

15、大小:A.蒸发速率的增加等效于蒸发源温度的升高,粒子变大B.原物质蒸汽压力的增加,粒子变大。C.惰性气体原子量加大,或其压力增大,粒子近似的成比例增大。 气体冷凝法优点:表面清洁;粒度齐整,粒度分布窄;粒度容易控制。 惰性气体蒸发法制备纳米铜粉实验原理:1.电阻加热法制备纳米粉体是在真空状态及惰性其他氩气和氢气中,利用电阻发热体将金属、合金或陶瓷蒸发气化,然后与惰性气体碰撞、冷却、凝结而形成纳米微粒。 2.实验步骤:1.检查设备的气密性,检查循环冷却系统各部位是否畅通。2.打开机械泵,对真空室抽气,使其达到较高的真空度,关闭真空计,关闭机械泵,并对机械泵放气。3.打开氩气和氢气管道阀,往真空室

16、中充入低压的纯净的氩气,并控制适当的比例,关闭道阀,关闭气瓶减压阀及总阀。4.开通循环冷却系统。5.打开总电源及蒸发开关,调节接触调压器,使工作电压由0缓慢升至100伏,通过观察窗观察真空室内的现象:钼舟逐渐变红热,钼舟中的铜片开始熔化,接着有烟雾生成并上升。 气相法生长纳米线的机理:(简答题)气-液-固(VLS)生长机制:VLS生长机制的一般要求必须有催化剂的存在,在适宜的温度下,催化剂能与生长材料的组元互熔形成液态的共熔物,生长材料的组元不断从气相中获得,当液态中熔质组元达到过饱和后,晶须将沿着固-液界面择优方向析出,长成线状晶体。气-固(VS)生长法:在VS过程中,首先是通过热蒸发,化学还原,气相反应产生气体,随后气体被传输并沉积

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 试题/考题 > 初中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号