换热器的设计.doc

上传人:壹****1 文档编号:559855836 上传时间:2023-06-09 格式:DOC 页数:57 大小:957.27KB
返回 下载 相关 举报
换热器的设计.doc_第1页
第1页 / 共57页
换热器的设计.doc_第2页
第2页 / 共57页
换热器的设计.doc_第3页
第3页 / 共57页
换热器的设计.doc_第4页
第4页 / 共57页
换热器的设计.doc_第5页
第5页 / 共57页
点击查看更多>>
资源描述

《换热器的设计.doc》由会员分享,可在线阅读,更多相关《换热器的设计.doc(57页珍藏版)》请在金锄头文库上搜索。

1、本章符号说明 英文字母B折流板间距,m; C系数,无量纲; d管径,m; D换热器外壳内径,m; f摩擦系数; F系数; h圆缺高度,m; K总传热系数,W/(m2); L管长,m; m程数; n指数; 管数; 程数; N管数; 程数; NB折流板数; Nu努塞尔特准数; P压力,Pa; 因数; Pr普兰特准数; q热通量,W/m2; Q传热速率,W; r半径,m; 气化潜热,kJ/kg; R热阻,m2/W; 因数; Re雷诺准数; S(或A)传热面积,m2; t冷流体温度,; 管心距,m; T热流体温度,; u流速,m/s; W(或qm)质量流量,kg/s, V(或qV)体积流量,m3/s。

2、 希腊字母 对流传热系数,W/(m2); 有限差值; 导热系数,W/(m); 粘度,PaS; 密度,kg/m3; 校正系数。 下标 c冷流体; h热流体; i管内; m平均; o管外; s污垢。2.1 概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。在工程实践中有时也会存在两种以上流体参加换热的换热器,但它的基本原理与前一种情形并无本质上的差别。 在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,并占有十分重要的地位。在化工厂,换热器的费用约

3、占总费用的1020,在炼油厂约占总费用的3540。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。 随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。 换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。 换热器按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,按照传

4、热面的形状和结构特点又可分为管壳式换热器、板面式换热器和扩展表面式换热器(板翅式、管翅式等),如表2-1所示。 表2-1 传热器的结构分类 类 型 特 点 间 壁 式 管 壳 式 列管式 固定管板式 刚性结构 用于管壳温差较小的情况(一般50),管间不能清洗 带膨胀节 有一定的温度补偿能力,壳程只能承受低压力 浮头式 管内外均能承受高压,可用于高温高压场合 U型管式 管内外均能承受高压,管内清洗及检修困难 填料函式 外填料函 管间容易泄漏,不宜处理易挥发、易爆炸及压力较高的介质 内填料函 密封性能差,只能用于压差较小的场合 釜式 壳体上部有个蒸发空间用于再沸、蒸煮 双套管式 结构比较复杂,主要

5、用于高温高压场合和固定床反应器中 套管式 能逆流操作,用于传热面较小的冷却器、冷凝器或预热器 螺旋管式 沉浸式 用于管内流体的冷却、冷凝或管外流体的加热 喷淋式 只用于管内流体的冷却或冷凝 板面式 板式 拆洗方便,传热面能调整,主要用于粘性较大的液体间换热 螺旋板式 可进行严格的逆流操作,有自洁的作用,可用作回收低温热能 平板式 结构紧凑,拆洗方便,通道较小、易堵,要求流体干净 板壳式 板束类似于管束,可抽出清洗检修,压力不能太高 混合式 适用于允许换热流体之间直接接触 蓄热式 换热过程分阶段交替进行,适用于从高温炉气中回收热能的场合 完善的换热器在设计或选型时应满足以下各项基本要求。 (1)

6、合理地实现所规定的工艺条件 传热量、流体的热力学参数(温度、压力、流量、相态等)与物理化学性质(密度、粘度、腐蚀性等)是工艺过程所规定的条件。设计者应根据这些条件进行热力学和流体力学的计算,经过反复比较,使所设计的换热器具有尽可能小的传热面积,在单位时间内传递尽可能多的热量。其具体做法如下。 增大传热系数? 在综合考虑流体阻力及不发生流体诱发振动的前提下,尽量选择高的流速。 提高平均温差? 对于无相变的流体,尽量采用接近逆流的传热方式。因为这样不仅可提高平均温差,还有助于减少结构中的温差应力。在允许的条件时,可提高热流体的进口温度或降低冷流体的进口温度。 妥善布置传热面? 例如在管壳式换热器中

7、,采用合适的管间距或排列方式,不仅可以加大单位空间内的传热面积,还可以改善流体的流动特性。错列管束的传热方式比并列管束的好。如果换热器中的一侧有相变,另一侧流体为气相,可在气相一侧的传热面上加翅片以增大传热面积,更有利于热量的传递。 (2)安全可靠 换热器是压力容器,在进行强度、刚度、温差应力以及疲劳寿命计算时,应遵照我国钢制石油化工压力容器设计规定与钢制管壳式换热器设计规定等有关规定与标准。这对保证设备的安全可靠起着重要的作用。 (3)有利于安装、操作与维修 直立设备的安装费往往低于水平或倾斜的设备。设备与部件应便于运输与装拆,在厂房移动时不会受到楼梯、梁、柱的妨碍,根据需要可添置气、液排放

8、口,检查孔与敷设保温层。 (4)经济合理 评价换热器的最终指标是:在一定的时间内(通常为1年)固定费用(设备的购置费、安装费等)与操作费(动力费、清洗费、维修费等)的总和为最小。在设计或选型时,如果有几种换热器都能完成生产任务的需要,这一指标尤为重要。 动力消耗与流速的平方成正比,而流速的提高又有利于传热,因此存在一最适宜的流速。 传热面上垢层的产生和增厚,使传热系数不断降低,传热量随之而减少,故有必要停止操作进行清洗。在清洗时不仅无法传递热量,还要支付清洗费,这部分费用必须从清洗后传热条件的改善得到补偿,因此存在一最适宜的运行周期。 严格地讲,如果孤立地仅从换热器本身来进行经济核算以确定适宜

9、的操作条件与适宜的尺寸是不够全面的,应以整个系统中全部设备为对象进行经济核算或设备的优化。但要解决这样的问题难度很大,当影响换热器的各项因素改变后对整个系统的效益关系影响不大时,按照上述观点单独地对换热器进行经济核算仍然是可行的。2.2 列管式换热器的设计列管式换热器的应用已有很悠久的历史。现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中,列管式换热器仍处于主导地位。同时板式换热器也已成为高效、紧凑的换热设备,大量地应用于工业中。为此本章对这两类换热器的工艺设计进行介绍。 列管式换热器的设计资料较完善,已有系列化标准。目前我国列管

10、式换热器的设计、制造、检验、验收按“钢制管壳式(即列管式)换热器”(GB151)标准执行。 列管式换热器的设计和分析包括热力设计、流动设计、结构设计以及强度设计。其中以热力设计最为重要。不仅在设计一台新的换热器时需要进行热力设计,而且对于已生产出来的,甚至已投人使用的换热器在检验它是否满足使用要求对,均需进行这方面的工作。 热力设计指的是根据使用单位提出的基本要求,合理地选择运行参数,并根据传热学的知识进行传热计算。 流动设计主要是计算压降,其目的就是为换热器的辅助设备例如泵的选择做准备。当然,热力设计和流动设计两者是密切关联的,特别是进行热力计算时常需从流动设计中获取某些参数。 结构设计指的

11、是根据传热面积的大小计算其主要零部件的尺寸,例如管子的直径、长度、根数、壳体的直径、折流板的长度和数目、隔板的数目及布置以及连接管的尺寸,等等。 在某些情况下还需对换热器的主要零部件特别是受压部件做应力计算,并校核其强度。对于在高温高压下工作的换热器,更不能忽视这方面的工作。这是保证安全生产的前提。在做强度计算时,应尽量采用国产的标准材料和部件,根据我国压力容器安全技术规定进行计算或校核(该部分内容属设备计算,此处从略)。 列管式换热器的工艺设计主要包括以下内容: 根据换热任务和有关要求确定设计方案; 初步确定换热器的结构和尺寸; 核算换热器的传热面积和流体阻力; 确定换热器的工艺结构。 2.

12、2.1设计方案的确定 2.2.1.1 换热器类型的选择 (1)固定管板式换热器 这类换热器如图2-1(a)所示。固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构使壳侧清洗困难,所以壳程宜用于不易结垢和清洁的流体。当管子和壳体的壁温差大于50时,应在壳体上设置温差补偿膨胀节,依靠膨胀节的弹性变形可以减少温差应力。膨胀节的形式较多,常见的有U形、平板形和形等几种。由于U形膨胀节的挠性与强度都比较好,所以使用得最为普遍。当管子和壳体的壁温差大于60和壳程压强超过0.6MPa时,由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就

13、应考虑其他结构。由此可见,这种换热器比较适合用于温差不大或温差较大但壳程压力不高的场合。 (2)浮头式换热器 浮头式换热器针对固定管板式的缺陷做了结构上的改进。两端管板只有一端与壳体完全固定,另一端则可相对于壳体作某些移动,该端称之为浮头,如图2-1(b)所示。换热器管束膨胀不受壳体约束,所以壳体与管束之间不会由于膨胀量的不同而产生热应力。而且在清洗和检修时,仅需将管束从壳体中抽出即可,所以能适用于管壳壁间温差较大,或易于腐蚀和易于结垢的场合。但该类换热器结构复杂、笨重,造价约比固定管板式高20左右,材料消耗量大,而且由于浮头的端盖在操作中无法检查,所以在制造和安装时要特别注意其密封,以免发生

14、内漏,管束和壳体的间隙较大,在设计时要避免短路。至于壳程的压力也受滑动接触面的密封限制。 (3)填料函式换热器 此类换热器的管板也仅有一端与壳体固定,另一端采用填料函密封,如图2-1(C)所示。它的管束也可自由膨胀,所以管壳之间不会产生热应力,且管程和壳程都能清洗,结构较浮头式简单,造价较低,加工制造方便,材料消耗较少。但由于填料密封处易于泄漏,故壳程压力不能过高,也不宜用于易挥发、易燃、易爆、有毒的场合。 (4)U型管换热器 U形管式换热器仅有一个管板,管子两端均固定于同一管板上,如图2-1(d)所示。这类换热器的特点是:管束可以自由伸缩,不会因管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压能力强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。但管内清洗不便,管束中间部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分布管不紧凑,所以管子数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。此外,为了弥补弯管后管壁的减薄,直管部分必须用壁较厚的管子。这就影响了它的使用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质不易结垢,高温、高压、

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号