高一数学上册知识点归纳.docx

上传人:公**** 文档编号:558513305 上传时间:2022-12-31 格式:DOCX 页数:8 大小:15.97KB
返回 下载 相关 举报
高一数学上册知识点归纳.docx_第1页
第1页 / 共8页
高一数学上册知识点归纳.docx_第2页
第2页 / 共8页
高一数学上册知识点归纳.docx_第3页
第3页 / 共8页
高一数学上册知识点归纳.docx_第4页
第4页 / 共8页
高一数学上册知识点归纳.docx_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《高一数学上册知识点归纳.docx》由会员分享,可在线阅读,更多相关《高一数学上册知识点归纳.docx(8页珍藏版)》请在金锄头文库上搜索。

1、 高一数学上册知识点归纳 向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为的向量. 单位向量:长度等于个单位的向量. 相等向量:长度相等且方向一样的向量 向量的运算 加法运算 AB+BC=AC,这种计算法则叫做向量加法的三角形法则。 已知两个从同一点O动身的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。 对于零向量和任意向量a,有:0+a=a+0=a。 |a+b|a|+|b|。 向量的加法满意全部的加法运算定律。 减法运算

2、与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍旧是零向量。 (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。 数乘运算 实数与向量a的积是一个向量,这种运算叫做向量的数乘,记作a,|a|=|a|,当0时,a的方向和a的方向一样,当0时,a的方向和a的方向相反,当=0时,a=0。 设、是实数,那么:(1)()a=(a)(2)()a=aa(3)(ab)=ab(4)(-)a=-(a)=(-a)。 向量的加法运算、减法运算、数乘运算统称线性运算。 向量的数量积 已知两个非零向量a、b,那么|a|b|cos叫做a与b的数量积或内积,记作a?b,是a与b

3、的夹角,|a|cos(|b|cos)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。 a.b的几何意义:数量积a.b等于a的长度|a|与b在a的方向上的投影|b|cos的乘积。 两个向量的数量积等于它们对应坐标的乘积的和。 高一数学上册学问点归纳2 1.函数的概念:设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA叫做

4、函数的值域. 留意:2假如只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必需大于零;(4)指数、对数式的底必需大于零且不等于1.(5)假如函数是由一些根本函数通过四则运算结合而成的.那么,它的定义域是使各局部都有意义的x的值组成的集合.(6)指数为零底不行以等于零(6)实际问题中的函数的定义域还要保证明际问题有意义. 构

5、成函数的三要素:定义域、对应关系和值域 再留意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系打算的,所以,假如两个函数的定义域和对应关系完全全都,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全全都,而与表示自变量和函数值的字母无关。一样函数的推断(方法):表达式一样;定义域全都(两点必需同时具备) 值域补充 (1)、函数的值域取决于定义域和对应法则,不管实行什么方法求函数的值域都应先考虑其定义域.(2).应熟识把握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解简单函数值域的根底。 3.函数图象学问归纳 (1

6、)定义:在平面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(xA)的图象. C上每一点的坐标(x,y)均满意函数关系y=f(x),反过来,以满意y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C=P(x,y)|y=f(x),xA 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。 (2)画法 A、描点法:依据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最终用平滑的曲

7、线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用: 1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。 高一数学上册学问点归纳3 1.数列的定义 按肯定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项. (1)从数列定义可以看出,数列的数是按肯定次序排列的,假如组成数列的数一样而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列. (2)在数列的定义中并没有规定数列中的数必需不同,因此,在同一数列中可以消失多个一样的数字,如:-1的

8、1次幂,2次幂,3次幂,4次幂,构成数列:-1,1,-1,1,. (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n. (5)次序对于数列来讲是非常重要的,有几个一样的数,由于它们的排列次序不同,构成的数列就不是一个一样的数列,明显数列与数集有本质的区分.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而2,3,4,5,6中元素不管按怎样的次序排列都是同一个集合. 2.数列的分类 (1)依据数列的项数多少可以对数列进展分类,分为有穷数列和无穷

9、数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,2n-1表示有穷数列,假如把数列写成1,3,5,7,9,或1,3,5,7,9,2n-1,它就表示无穷数列. (2)根据项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摇摆数列、常数列. 3.数列的通项公式 数列是按肯定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的, 这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不肯定是的,仅仅知道一

10、个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4, 由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观看分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循. 再强调对于数列通项公式的理解留意以下几点: (1)数列的通项公式实际上是一个以正整数集N_或它的有限子集1,2,n为定义域的函数的表达式. (2)假如知道了数列的通项公式,那么依次用1,2,3,去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可推断某数是否是某数列中的一项,假如是的话,是第几项. (3)如全部的

11、函数关系不肯定都有解析式一样,并不是全部的数列都有通项公式. 如2的缺乏近似值,准确到1,0.1,0.01,0.001,0.0001,所构成的数列1,1.4,1.41,1.414,1.4142,就没有通项公式. (4)有的数列的通项公式,形式上不肯定是的,正如举例中的: (5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不. 4.数列的图象 对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系: 序号:1234567 项:45678910 这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数

12、列可以看作是一个定义域为正整集N_(或它的有限子集1,2,3,n)的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特别的函数,它的自变量只能取正整数. 由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式. 数列是一种特别的函数,数列是可以用图象直观地表示的. 数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为便利起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化状况,但不准确. 把数列与函数比拟,数列是特别的函数,特别在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 习题/试题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号