新能源之海洋能发电.doc

上传人:s9****2 文档编号:558368400 上传时间:2023-01-06 格式:DOC 页数:6 大小:39.01KB
返回 下载 相关 举报
新能源之海洋能发电.doc_第1页
第1页 / 共6页
新能源之海洋能发电.doc_第2页
第2页 / 共6页
新能源之海洋能发电.doc_第3页
第3页 / 共6页
新能源之海洋能发电.doc_第4页
第4页 / 共6页
新能源之海洋能发电.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《新能源之海洋能发电.doc》由会员分享,可在线阅读,更多相关《新能源之海洋能发电.doc(6页珍藏版)》请在金锄头文库上搜索。

1、 海洋能发电一、海洋能的简介 在福岛核电厂事故之后,各国纷纷检讨核电政策。日前德国宣布将于2022年关闭所有核电厂,以其它电力来源替代,未来再生能源发电势必扮演更重要的角色。 在各种再生能源技术当中,海洋能是发展较为迟缓的技术之一,目前各国对于海洋能的利用,仍处于相当初始的阶段。不过地球有百分之七十一的面积是海洋,海洋能蕴藏量亦相当丰沛,在技术发展日益成熟的情况下,未来海洋能发电可望逐步成为人类重要的能源来源。本篇将介绍海洋能的技术种类、目前的发展现况、以及未来的展望。二、海洋能发电的现状与趋势 2.1现状海洋能的利用以发电为主,技术种类繁多,现阶段发展较多的四种技术,分别为:(1)利用海洋中

2、的洋流推动水轮机发电之海流发电(Marine Current Power);(2)利用每天潮流涨落的位能差产生电力之潮汐发电(Tidal Power);(3)利用波浪运动的位能差、往复力或浮力产生动力之波浪发电(Wave Power);(4)利用深层海水与表层海水之温差汽化工作流体带动涡轮机发电之海洋温差发电(Ocean Thermal Energy Conversion;OTEC)。以下分别介绍各种发电技术。(1) 海流发电 海流发电系利用海洋中海流的流动动力推动水轮机发电,一般乃于海流流经处设置截流涵洞之沉箱,并于其内设置水轮发电机,并可视发电需要增加多个机组,来进行发电;惟于机组间需预留

3、适当之间隔,以避免紊流互相干扰。目前国外已经有小规模试运转的案例,然而要达到大规模商用化仍需要一段日。(2) 潮汐发电 潮汐发电便是利用海潮满潮、退潮所形成的水位落差,来从事发电,在海湾围建堤防和水路,在涨潮时引水入储水池,退潮时将储水放出,每日可发电四次,但当潮汐满潮与退潮高度相差较小,则发电效益较低。理想具经济效益的潮差至少需要5公尺。潮汐发电为商用化进展较快的技术,目前已有商用化运转的发电站。(3) 波浪发电 波浪发电是将海浪动能转换成电能,其运转型式完全依据波浪之上下振动特性而设计,利用稳定运动机制撷取波浪动能,然后再加以利用来发电。现阶段较常见的设计为在海边建造中空的结构,利用波浪起

4、伏的落差,推动结构体内的空气,形成强大的气流来推动涡轮发电,目前欧盟正积极发展可商转的系统,能源转换效率可达10%以上,但目前波浪发电设备尚十分分歧,采用的技术也有一些差异。(4) 温差发电海洋温差发电之原理与火力、核能发电原理相类似,首先利用表层海水蒸发低蒸发温度之流体,如氨、丙烷或氟利昂,使其汽化推动涡轮发电机发电,然后利用深层冷海水冷却工作流体成液态,再予反复使用。当表层与底层海水温差超过20以上,即可产生电力。因受限于大口径冷水管技术,此发电方法难以大型化,转换效率仍有待于提升,目前转换效率约35%。 2.2趋势从目前技术发展来看, 潮汐能发电技术最为成熟, 已经达到了商业开发阶段,

5、已建成的法国朗斯电站、加拿大安纳波利斯电站、中国的江厦电站均已运行多年; 波浪能和潮流能还处在技术攻关阶段, 英国、丹麦、挪威、意大利、澳大利亚、美国、中国建造了多种波浪能和潮流能装置, 试图改进技术, 逐渐将技术推向实用; 温差能还处于研究初期, 只有美国建造了一座温差能电站, 进行技术探索。从能流密度来看, 波浪能、海流能的能流密度最大, 因此这2 种能量转换装置的几何尺度较小, 其最大尺度通常在10 m 左右, 可达到百千瓦级装机容量; 温差能利用需要连通表层海水与深部海水, 因此其最大尺度通常在几百米量级, 可达到百千瓦级净输出功率; 潮汐能能流密度较小, 需要建立大坝控制流量, 以增

6、大坝两侧的位差, 从而在局部增大能流密度, 计入大坝尺度, 潮汐能的最大尺度在千米量级,装机容量可达到兆瓦级。尺度小带来许多便利之处: 一是应用灵活, 建造方便, 一旦需要可以在短时间内完成, 因此具有军用前景; 二是规模可大可小, 大规模可以通过适当装机容量的若干装置并联而成; 三是对环境的影响较小。因此, 人们普遍认为波浪能和潮流能对环境的影响不大, 而潮汐能对环境的影响较大。基于以上理由,目前国外发展最快的是波浪能和海流能。而波浪能由于比海流能的分布更广, 因而更加受到人们的关注。从能量形式来看, 温差能属于热能, 潮汐能、海流能、波浪能都是机械能。对于发电来说, 机械能的品位高于热能,

7、 因此在转换效率和发电设备成本等方面具有一定优势。温差能在发电的同时还可以产出淡水, 这一点也值得注意。三、技术方案3.1 波浪能发电系统(1) OWC技术OWC 波能装置利用空气作为转换的介质。图1 所示为OWC 波能转换系统的示意图。该系统的一级能量转换机构为气室, 其下部开口在水下, 与海水连通, 上部也开口( 喷嘴) , 与大气连通; 在波浪力的作用下, 气室下部的水柱在气室内作上下振荡,压缩气室的空气往复通过喷嘴, 将波浪能转换成空气的压能和动能。该系统的二级能量转换机构为空气透平, 安装在气室的喷嘴上, 空气的压能和动能可驱动空气透平转动, 再通过转轴驱动发电机发电。OWC 波能装

8、置的优点是转动机构不与海水接触,防腐性能好, 安全可靠, 维护方便; 其缺点是二级能量转换效率较低。(2) 筏式技术它由铰接的筏体和液压系统组成。筏式装置顺浪向布置, 筏体随波运动, 将波浪能转换为筏体运动的机械能( 一级转换) ; 然后驱动液压泵, 将机械能转换为液压能, 驱动液压电动机转动, 转换为旋转机械能( 二级转换) ; 通过轴驱动电机发电, 将旋转机械能转换为电能( 三级转换) 。筏式技术的优点是筏体之间仅有角位移, 即使在大浪下, 该位移也不会过大, 故抗浪性能较好;缺点是装置顺浪向布置, 单位功率下材料的用量比垂直浪向布置的装置大, 可能提高装置成本。McCabe 波浪泵由3

9、个宽4 m 的钢浮体铰接而成, 其中间浮体较小, 但其下有一块板, 可以增加附加质量, 使中间浮体运动幅度相对较小, 以增大前后两端浮体相对中间浮体的角位移。该装置可以为海水淡化装置提供能量, 也可用来发电。海蛇装置为改良的筏式装置。该装置不仅允许浮体纵摇, 也允许艏摇, 因而减小了斜浪对浮体及铰接结构的载荷。装置的能量采集系统为端部相铰接、直径3. 5 m 的浮筒, 利用相邻浮筒的角位移驱动活塞, 将波浪能转换成液压能。装置由3 个模块组成, 每个模块的装机容量为250 kW, 总装机容量为750 kW, 总长为150 m, 放置在水深为50 m 60 m 的海面上。(3) 收缩波道技术收缩

10、波道装置由收缩波道、高位水库、水轮机、发电机组成, 如图7 所示。该装置喇叭形的收缩波道为一级能量转换装置。波道与海连通的一面开口宽, 然后逐渐收缩通至高位水库。波浪在逐渐变窄的波道中, 波高不断被放大, 直至波峰溢过收缩波道边墙, 进入高位水库, 将波浪能转换成势能( 一级转换) 。高位水库与外海间的水头落差可达3 m 8 m, 利用水轮发电机组可以发电( 二级、三级转换) 。其优点是一级转换没有活动部件, 可靠性好, 维护费用低, 在大浪时系统出力稳定; 不足之处是小浪下的系统转换效率低。(4)点吸收( 浮子) 技术点吸收式装置的尺度与波浪尺度相比很小, 利用波浪的升沉运动吸收波浪能。点吸

11、收式装置由相对运动的浮体、锚链、液压或发电装置组成。这些浮体中有动浮体和相对稳定的静浮体, 依靠动浮子与静浮体之间的相对运动吸收波浪能(5) 鸭式技术鸭式装置是一种经过缜密推理设计出的一种具有特殊外形的波能装置, 其效率高, 但该装置抗浪能力还需要提高。该装置具有一垂直于来波方向安装的转动轴。装置的横截面轮廓呈鸭蛋形, 其前端( 迎浪面) 较小,形状可根据需要随意设计; 其后部( 背浪面) 较大, 水下部分为圆弧形, 圆心在转动轴心处。装置在波浪作用下绕转动轴往复转动时, 装置的后部因为是圆弧形, 不产生向后行进的波; 又由于鸭式装置吃水较深, 海水靠近表面的波难以从装置下方越过, 跑到装置的

12、后面, 故鸭式装置的背后往往为无浪区- 这使得鸭式装置可以将所有的短波拦截下来, 如果设计得当, 鸭式装置在短波时的一级转换效率接近于100%。3.2 潮夕能和海流能技术(1) 垂直轴式潮流能发电系统在垂直轴式潮流能发电装置方向, 国外的研究起步较早。加拿大Blue Energy 公司是国外较早开展垂直轴潮流能发电装置研究的单位。其中著名的Davis 四叶片垂直轴涡轮机就是以该公司的工程师来命名的。到目前为止, 该公司一共研制了6 台试验样机并进行了相关的测试试验, 最大功率等级达到100 kW。通过长期的试验研究发现, 在样机中使用扩张管道装置可以将系统的工作效率提高至45%左右。意大利Po

13、nte di Ar chimede Inter nat ional SpA公司和Naples 大学航空工程系合作研发了一台130 kW 垂直轴水轮机模型样机, 命名为Kobold 涡轮, 并于2000 年在Messina 海峡进行了海上试验。它采用了传动比为160 的齿轮箱增速装置, 并可以利用离心力进行叶片的节距调节, 具有相对较大的启动力矩。Kobo ld 涡轮在1. 8 m/ s 的水流流速下发出功率为20 kW 左右, 系统的整体工作效率较低, 约为23%。(2)水平轴式潮流能发电系统与垂直轴式结构相比, 水平轴式潮流能发电装置具有效率高、自启动性能好的特点, 若在系统中增加变桨或对流

14、机构则可使机组适应双向的潮流环境, 这种形式的发电装置兴起于最近10 年, 但却取得了很大的进展。英国Mar ine Current Turbine 公司是目前世界上在潮流发电领域取得最大成就的单位之一。该公司设计了世界上第1 台大型水平轴式潮流能发电样机- 300 kW 的/ Seaf low 0, 并于2003 年在Devon 郡北部成功进行了海上试验运转。该公司第2 阶段商业规模的1. 2 MW 双叶轮结构的/ Seagen 0 样机也于2008 年在北爱尔兰Strangford 湾成功进行了试运行, 如图14 所示, 最大发电功率达到了1. 2 MW。目前, 该样机仍处于试运转阶段。3

15、.3 温差能利用(1) 开式循环开式循环采用表层温海水作为工质, 其工作框图如图17 所示。当温海水进入真空室后, 低压使之发生闪蒸, 产生约2. 4 kPa 绝对压力的蒸汽。该蒸汽膨胀, 驱动低压汽轮机转动, 产生动力。该动力驱动发电机产生电力。做功后的蒸汽经冷海水降温而冷凝, 减小了汽轮机背后的压力( 这是保证汽轮机工作的条件) , 同时生成淡水。开式循环过程中要消耗大量的能量: 在温海水进入真空室前, 需要开动真空泵将温海水中的气体除去, 造成真空室真空; 在淡水生成之后, 需要用泵将淡水排出系统( 注意开式循环系统内的绝对压力小于2. 4 kPa, 而系统外的绝对压力不小于98 kPa

16、,因此排出1 m3 淡水需要的能量大于95. 6 kJ) ; 冷却的冷海水需要从深海抽取。这些都需要从系统产生的动力中扣除。当系统存在如效率不高、损耗过大、密封性不好等问题时, 就会造成产能下降或耗能增加, 系统扣除耗能之后产生的净能量就会下降, 甚至为负值。因此, 降低流动中的损耗, 提高密封性, 提高每个泵的工作效率, 提高换热器的效率, 就成为系统成败的关键。(2)闭式循环在闭式循环中, 温海水通过热交换器( 蒸发器)加热氨等低沸点工质, 使之蒸发。工质蒸发产生的不饱和蒸汽膨胀, 驱动汽轮机, 产生动力。该动力驱动发电机产生电力。做功后的蒸汽进入另一个热交换器, 由冷海水降温而冷凝, 减小了汽轮机背后的压力( 这是保证汽轮机工作的条件) 。冷凝后的工质被泵送至蒸发器

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号