硬件电路设计基础知识

上传人:公**** 文档编号:558025044 上传时间:2022-08-03 格式:DOC 页数:94 大小:1.03MB
返回 下载 相关 举报
硬件电路设计基础知识_第1页
第1页 / 共94页
硬件电路设计基础知识_第2页
第2页 / 共94页
硬件电路设计基础知识_第3页
第3页 / 共94页
硬件电路设计基础知识_第4页
第4页 / 共94页
硬件电路设计基础知识_第5页
第5页 / 共94页
点击查看更多>>
资源描述

《硬件电路设计基础知识》由会员分享,可在线阅读,更多相关《硬件电路设计基础知识(94页珍藏版)》请在金锄头文库上搜索。

1、硬件电子电路基础关于本课程 第一章 半导体器件 1-1 半导体基础知识1-2 PN结1-3 二极管1-4 晶体三极管 1-5 场效应管 第二章 基本放大电路 2-1 晶体三极管基本放大电路2-2 反馈放大器的基本概念2-3 频率特性的分析法2-4 小信号选频放大电路 2-5场效应管放大电路 第三章 模拟集成电路 31 恒流源电路32 差动放大电路33 集成运算放大电路34 集成运放的应用 35 限幅器(二极管接于运放输入电路中的限幅器) 36 模拟乘法器 第四章 功率放大电路 41 功率放大电路的主要特点42乙类功率放大电路43丙类功率放大电路44丙类谐振倍频电路 第五章 正弦波振荡器 51反

2、馈型正弦波振荡器的工作原理 52 LC正弦波振荡电路 53 LC振荡器的频率稳定度54 石英晶体振荡器55 RC正弦波振荡器第六章 线性频率变换 振幅调制、检波、变频 61 调幅波的基本特性62 调幅电路63 检波电路64 变频 第七章 非线性频率变换 角度调制与解调 71 概述 72 调角信号分析 73 调频及调相信号的产生 74 频率解调的基本原理和方法 第八章 反馈控制电路 81 自动增益控制(AGC)82 自动频率控制(AFC) 83 自动相位控制(APC)PLL第一章 半导体器件1-1 半导体基础知识1-2 PN结1-3 二极管1-4 晶体三极管 1-5 场效应管 1-1 半导体基础

3、知识一、什么是半导体 半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率) (如:硅Si 锗Ge等4价元素以及化合物)二、半导体的导电特性 本征半导体纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略)1、 半导体的导电率会在外界因素作用下发生变化 掺杂管子 温度热敏元件 光照光敏元件等 2、 半导体中的两种载流子自由电子和空穴 自由电子受束缚的电子 () 空穴 电子跳走以后留下的坑 () 三、杂质半导体N型、P型 (前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。 N型半导体 (自由电子多) 掺杂为5价元素。 如:磷;砷 P5价 使自由电子大大

4、增加 原理: Si4价 P与Si形成共价键后多余了一个电子。 载流子组成:o 本征激发的空穴和自由电子数量少。 o 掺杂后由P提供的自由电子数量多。 o 空 穴少子 o 自由电子多子 P型半导体 (空穴多) 掺杂为3价元素。 如:硼;铝 使空穴大大增加 原理: Si4价 B与Si形成共价键后多余了一个空穴。 B3价 载流子组成:o 本征激发的空穴和自由电子数量少。 o 掺杂后由B提供的空 穴数量多。 o 空 穴多子 o 自由电子少子 结论:N型半导体中的多数载流子为自由电子; P型半导体中的多数载流子为 空穴 。1-2 PN结一、PN结的基本原理 1、 什么是PN结 将一块P型半导体和一块N型

5、半导体紧密第结合在一起时,交界面两侧的那部分区域。 2、 PN结的结构分界面上的情况:P区: 空穴多N区: 自由电子多扩散运动: 多的往少的那去,并被复合掉。留下了正、负离子。(正、负离子不能移动)留下了一个正、负离子区耗尽区。由正、负离子区形成了一个内建电场(即势垒高度)。方向:N- P 大小: 与材料和温度有关。 (很小,约零点几伏)漂移运动: 由于内建电场的吸引,个别少数载流子受电场力的作用与多子运动方向相反作运动。结论:在没有外加电压的情况下,扩散电流和漂移电流的大小相等,方向相反。总电流为零。二、PN结的单向导电特性 1、 外加正向电压时:(正偏) 结论: 势垒高度 PN结宽度(耗尽

6、区宽度) 扩散电流 2、 外加反向电压时: (反偏) 结论: 势垒高度 PN结宽度(耗尽区宽度) 扩散电流 (趋近于0) 此时总电流反向饱和电流(漂移电流):I5 注:反向饱和电流I5只与温度有关,与外加电压无关。【PN结的反向击穿】: 齐纳击穿:势垒区窄,较高的反向电压形成的内建电场将价电子拉出共价键,导致反向电流剧增。7V 当反向电压在4V和7V之间的时候,两种击穿均有。【PN结的电容效应】: 势垒电容:外加电压变化引起势垒区宽窄的变化引起。它与平行板电热器在外加电压作用下,电容极板上积累电荷情况相似。对外等效为非线性微变电容。(反偏减小,正偏增大) 扩散电容:当PN结外加正向电压时,由于

7、扩散作用,从另一方向本方注入少子,少子注入后,将破坏半导体的电中性。为了维持电中性,将会有相同数量的异性载流子从外电路进入半导体,在半导体中形成空穴电子对储存。外电压增量引起空穴电子对存储就象电容充电一样。 PN结等效为:两个扩散电容一个势垒电容。(对外等效为三个容性电流相加。等效对外不对内)反偏:扩散电流0,以势垒电容为主。正偏:扩散电流很大,以扩散电容为主。1-3 二极管一、构成与符号二、伏安特性曲线 1.正向特性: 正向电压较小时,正向电流几乎为0死区。 当正向电压超过某一门限电压时,二极管导通,电流随电压的增加成指数率的关系迅速增大。 门限电压(导通电压)UD :硅管 0.5-0.7V

8、 锗管 0.1-0.2V 2反向特性: 当外加电压小于反向击穿电压时,反向电流几乎不随电压变化。 当外加电压大于反向击穿电压 UB时,反向电流随电压急剧增大(击穿)。 3伏安特性解析式 在理想条件下,PN结的伏安(电流与结电压)关系式:呈指数关系 式中: q电子电荷量 K波尔兹曼常数 T绝对温度 0K(-273C) 令: (室温下 UT = 26mV ) 伏安关系式简化为: 当电压超过100mV时,公式可以简化为: 加正向电压时: 加反向电压时: I = -IS 4二极管的等效电阻 从二极管的伏安特性曲线上可以看出:二极管是非线性元件,等效电阻的大小与Q点有关。 直流电阻(静态电阻) 交流电阻

9、 例:用万用表测电阻和二极管换不同档测量电阻,结果一样吗? 特殊二极管:稳压二极管;变容二极管;发光二极管; 二极管应用: 1 整流:略2 稳压:稳压管稳压电路。P22 Fig 1-3-163 限幅器:二极管限幅器。P24-26 串联、并联、双向。例:P52 12 1-4 晶体三极管一、结构及符号 b区极薄 C结面积 e结 e区搀杂浓度最大,b区搀杂浓度最低。 (不能将两个二极管兑成一个三极管来用) 二、晶体管的四种工作状态 状态 发射结电压 集电结电压 放大 正 反 截止 反 反 饱和 正 正 倒置 反 正 三、放大状态下晶体管中的电流 注: 交流有效值 大写小写; 交流值 小写小写 ; 瞬

10、时值 小写大写 ; 静态值 大写大写 ;*注意: 实际电流的流向是与电子流的方向相反的。 用很少量的 IB 来控制 IC 。即三极管实际上是一个电流控制电流源-CCCS。 三个电极电流满足: IE=IB+IC 工作在放大状态下的NPN管一定为:IB 、 IC 流入,IE 流出。 工作在放大区的条件:NPNUC UB UE; PNPUC UB UE ; 发射结正偏,集电结反偏。 例:集成电路中没有三极管,是用三极管的一个结来代替,用哪个结?e结。(C结漏电流大)四、晶体管工作的三种组态 【共射】 对电压、电流都有放大倍数。 【共基】 无电流放大倍数,有电压放大倍数。 (IC IE) 【共集】 无

11、电压放大倍数,有电流放大倍数。 (UBE 7.0V )五、晶体三极管特性曲线 共射组态放大电路的特性曲线: 输入特性曲线 (IB-UBE)UCE UBE为一个正偏的PN结,所以特性曲线和二极管的正向特性曲线相同。有: 输出特性曲线 (IC-UCE)IB 因为三极管有三个电极,要想在二维坐标系上表示出三个变量之间的关系。特性曲线就得是一族。有: 特点: 截止区: iB = 0 ; iC = 0 ; UCE = UCC ; 放大区: iC 受 iB 控制。 各条曲线近似水平, iC 和 UCE 的变化基本无关,呈近似恒流特性。 饱和区: iC 不受 iB 控制。 UCE 0.3V六、晶体三极管的主要参数 1. 电流放大系数 直流电流放大系数 交流短路电流放大系数 共基极接法电流放大系数 ; ; 2. 极限参数 集电极最大允许电流ICOM :b下降至正常值时候的0.707倍所对应的 IC 值。 反向击穿电压BUCEO : 当基极开路时集电极和发射极之间的反向击穿电压。 集电极最大允许功耗PCM 。 3.三极管的输入电阻 共射电路的输入电阻: BE结电阻: 共基极输入电阻: 1-5 场效

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 试题/考题 > 初中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号