某厂1号机振动大机组跳机事故

上传人:hs****ma 文档编号:552757984 上传时间:2023-02-23 格式:DOC 页数:12 大小:19.46KB
返回 下载 相关 举报
某厂1号机振动大机组跳机事故_第1页
第1页 / 共12页
某厂1号机振动大机组跳机事故_第2页
第2页 / 共12页
某厂1号机振动大机组跳机事故_第3页
第3页 / 共12页
某厂1号机振动大机组跳机事故_第4页
第4页 / 共12页
某厂1号机振动大机组跳机事故_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《某厂1号机振动大机组跳机事故》由会员分享,可在线阅读,更多相关《某厂1号机振动大机组跳机事故(12页珍藏版)》请在金锄头文库上搜索。

1、某厂1号机振动大机组跳机事故 【简述】湘潭公司1号机由于#6低压加热器水位差压变送器数据失真,造成#6低压加热器汽侧水位过高,中压缸上下缸温差过大变形,#2轴瓦X方向轴振持续上升,机组打闸停机,造成非停事故。【事故经过】2015年7月29日12时21分,湘潭公司1号汽轮机#3轴瓦X方向轴振开始缓慢上升;12时23分,#3轴瓦Y方向轴振开始缓慢上升;12时24分,#2轴瓦X方向轴振也开始缓慢升高。12时29分,#2轴瓦X方向轴振升至90m、Y方向轴振升至52.4m;#3轴瓦X方向轴振升至42.4m、Y方向轴振升至34.8m。值长立即派人就地倾听各轴承声音,检查主汽门、调速汽门实际开度,未发现异常

2、。同时,监盘人员立即对机组相关运行参数进行检查。12时33分,#2轴瓦X方向轴振升至130m、Y方向轴振升至72.1m;#3轴瓦X方向轴振升至48.9m、Y方向轴振升至46.4m,运行人员解除机组AGC控制方式,调整机组负荷涨至173MW(通过机组实际运行中摸索,负荷180MW时振动值最优),主汽压力提高至12.1MPa,同时将主机润滑油温度降至42.1,此期间#2轴瓦X、Y方向轴振继续上升。12时40分,#2轴瓦X方向轴振升至177.4m、Y方向轴振升至104m,运行人员就地检查发现#3轴瓦附近声音增大,汽轮机内部无异常声响,运行人员快速降低机组负荷至145MW。12时50分,#1轴瓦X方向

3、轴振达到99.35m,Y方向轴振54.57m,#2轴瓦X方向轴振达到250m,Y方向轴振153m,#3瓦X方向轴振达到69.03m,Y方向轴振72.58m,此时虽未达到汽轮机振动保护逻辑动作的条件(任一轴瓦某方向轴振大于250m,相邻轴瓦同方向轴振大于125m,上述两个条件同时具备时,汽轮机振动保护动作,机组跳闸,无延时),但因#2轴瓦X方向轴振持续上升,且上升速度呈增快趋势,当值值长立即下令手动打闸停机。机组打闸后,发电部会同设备部专业人员立即就地查看汽轮机惰走过程中各轴瓦和汽缸的情况,除在惰走时,中压缸后轴封处有动静摩擦声外,高、中、低压缸及各轴瓦等其它部位未发现明显异常,汽轮机惰走曲线与

4、典型工况基本一致,未发现异常,13时10分,汽轮机转速到零,投盘车,盘车电流无波动,大轴晃度与原始值一致。后经进一步检查,发现6段抽汽温度、中压缸排汽温度(该测点位于中压排汽缸下部供热抽汽管道上,距离中压排汽缸底部约400mm),中压排汽缸下半内壁温度(该测点位于中压排汽缸底部,两根供热抽汽管道之间),中压排汽缸上半内壁温度(该测点位于中压排汽缸顶部,两根低压缸进汽管道之间)在汽轮机振动异常上升之前,在不同时间段先后开始下降。到机组打闸前,分别由235、241、208和248下降至100、121、121和240。从机组振动开始增大直至停机的过程中,汽轮机所有轴瓦温度、推力瓦温度、轴位移、高压缸

5、胀差均无明显变化,中压缸和低压缸胀差受中压排汽缸温度和低压缸进汽温度降低的影响略有升高,但均在正常范围内。检查中通过对#6低加汽侧放水,发现#6低加水位变送器测量不准,随后发现变送器一次门处于关闭状态,6段抽汽管道及供热抽汽管道内发现存水。进入低压排汽缸内部检查,低压末级叶片无损伤。结合机组打闸前中压排汽缸上、下半内壁温度的变化,汽轮机振动呈缓慢爬升无明显阶跃,低压缸进汽温度虽略有下降,但仍有约100过热度,以及上述其他检查情况和机组实际运行状态综合分析,基本可以排除中、低压缸进水,对汽轮机造成水冲击的可能性。【事故原因】1 机组停运后对系统进行检查,发现#6低压加热器水位差压变送器一次门处于

6、关闭状态,导致水位测量数据失真,正常疏水调门无法根据真实水位进行调节,造成#6低压加热器汽侧满水,#6低压加热器疏水通过汽轮机6段抽汽管道和供热抽汽管道溢流至中压缸排汽口处,造成中压排汽缸下半内壁温度下降,导致中压排汽缸上下半内壁存在约120的温差,中压排汽缸后部的中压缸后轴封收缩变形,引起中压转子轴颈与汽封发生动静摩擦,因该摩擦现象在停机前一直未消失,造成邻近的#3轴瓦X方向轴振持续升高,又因本机组为高中压分缸结构,受高中压缸之间的#2轴瓦负载偏轻,同时又是高中压进汽口的位置,易受其他部位振源的影响,在#3轴瓦X方向轴振开始升高约三分钟后连带引起#2轴瓦X方向轴振以更快的速度升高,最终因达到

7、汽轮机振动保护值后打闸停机。因此,#6低压加热器因水位测量失效,正常疏水调门无法正常调节,加热器满水倒流,是本次停机的直接原因。2 运行人员监盘不到位,机组启动后未能对#6低加水位偏低,正常疏水调门开度不正常的情况引起重视,主观认为是由于#6低加正常疏水和紧急疏水调门内漏造成的,未进行进一步检查核实,错过了及时发现该加热器水位测量失真的时机。在机组出现振动故障后对故障原因分析能力不强,未能及时发现6段抽汽及中压缸排汽温度异常下降的情况,从而影响了故障处理的准确性和及时性是本次停机的主要原因。3 #6低压加热器水位保护设置不合理,该加热器水位保护由一个开关量(就地液位开关)和一个模拟量(差压变送

8、器)组成,其中高一值(水位900mm,主控报警)由模拟量控制,高二值(水位1050mm,联锁开启紧急疏水调门、水侧旁路门,关闭抽汽电动门、逆止门和水侧出入口电动门)由开关量和模拟量以二取二的保护逻辑控制,因水位差压变送器即模拟量失效,造成加热器水位高异常后,高一值报警和高二值保护均未发出,致使#6低压加热器未能切除,是造成本次停机的另一主要原因。4 设备部热控专工和点检员在启机前后未对机组重要保护和重要参数进行细致检查,未能及时发现缺陷,是本次停机的间接原因。5 热控人员在5月12日至5月22日的1号机组停备期间,在完成“1号汽轮机6、7号低压加热器液位计表管更换(热控第二种工作票)”工作后,

9、未对#6低压加热器水位差压变送器系统进行恢复,在机组启动前及启动后对变送器进行检查时不认真,未发现该变送器一次门处于关闭状态,造成水位监视数据失真,是本次停机的间接原因。【防范措施】1. 严格按照集团公司关于规范发电机组启动阶段管理的通知要求,机组启动前做好设备、系统的检查、试运行和保护传动工作,机组启动后对主辅机系统进行全面检查,对所有控制系统、保护装置等逐一确认,保证运行状态符合规程要求。2. 严格按照集团公司、大唐国际开展安全隐患排查工作的要求,全面、深入的开展排查工作,对机组各种保护逻辑进行全面检查和梳理,遵循宁可误动、不能拒动的原则,修正错误或不合理的保护设置,增加应有未有的保护设置

10、,同时对保护装置进行彻底检查,消除安全隐患,切实保证设备安全,坚决杜绝走过场的情况发生。3. 认真对照集团公司、大唐国际关于机组“降非停”的工作要求以及我公司制定的“降非停”行动计划查找存在的问题,针对“降非停”行动计划逐项落实,将动态检查作为日常工作的重要内容。4. 发电部特别要加强对运行规程和二十五项反事故措施的培训和学习,深刻理解相关要求;要针对各种典型事故案例开展技术培训。梳理典型事故案例,制定相应的应急处置方案,并组织各运行值进行实战演练,对演练过程中存在问题进行完善,提高故障处理能力。同时开展有针对性的仿真机培训。从故障判断到处理在仿真机上进行逐项演练,提高运行人员基本操作技能和事

11、故应急处置能力。“停备”期间组织运行人员到运行机组相同岗位进行跟班操作。5. 加强运行管理。提高运行人员重要运行参数异常的敏感性,发现设备参数异常及时分析并联系相关人员进行处理,避免此类事件再次发生;要求发电部专工每天对设备运行重要参数进行跟踪检查,发现设备运行参数异常要及时分析处理。6. 加强设备管理,规范检修、维护、消缺工作,特别是加强过程管控,加强工作票、操作票管理,严格执行两票管理制度,对票种使用不规范的情况进行彻底整改。严肃执行验收制度,切实落实责任制。加强点检工作,完善点检点设置和规范点检内容,真正发挥出点检工作的重要作用。加强设备部专业人员和检修维护人员的技术培训工作,提高业务水

12、平。【简述】某电厂2号机组为东方汽轮机厂设计生产的N660-25/600/600 型超超临界压力、一次中间再热、单轴、三缸四排汽、双背压、凝汽式汽轮机,配套东方电机股份有限公司制造的QFSN-660-2-22B 型发电机。2015 年8 月,首次成功冲转,定速3000r/min 时刻,轴振、瓦振良好,达到了国标对新装机组振动水平的要求。机组并网后,低压缸瓦振和发电机振动逐渐增大;机组负荷450MW 时,58 瓦瓦振超过60m,7 瓦轴振也超过110m。振动专业技术人员协助电厂对2 号汽机的振动异常情况进行分析和安全评估。【事故经过】从机组首次并网后的历史数据来看,2 号机组的振动异常现象主要有

13、以下几个特征:(1)首次定速3000r/min 空载运行时,机组轴振、瓦振良好;带负荷后,低压缸B 缸及发电机振动随负荷升高明显增大,其中以58 瓦的瓦振及7Y 轴振对负荷的变化最为敏感,负荷大于450MW 时,58 瓦的瓦振、7Y 轴振就超过了报警值。(2)低压缸及发电机振动与负荷的跟随性具有可逆性,即随负荷升高而增大,负荷降低后,振动基本能恢复至原始水平。(3)初并网时刻,机组负荷33.6MW(无功27.4Mvar),7 瓦轴振/瓦振分别为33m /13m,8 瓦轴振/瓦振分别为24m /38m;负荷增加至560MW 时(期间调整了无功功率),发电机振动达到峰值,7 瓦轴振/瓦振分别为13

14、6m /76m,8 瓦轴振/瓦振分别为86m /92m。(4)瓦振与轴振比值偏大,即瓦振大、轴振小的问题:主要表现在5,6,8 瓦上,目前普遍认为瓦振与轴振比值的正常范围为0.10.5;就2 号机组来说,初定速3000r/min 时,瓦振与轴振的比值不到1,而带负荷后6 瓦比值超过2.5。(5)6Y轴振经常出现间歇性大幅跳变,在30m300m范围内大幅波动。【事故原因】(1)6Y 轴振经常出现间歇性大幅跳变,主要是10Hz 以下低频振动,且信号输出时好时坏,信号真实性还有待证实。(2)振动表现异常的58 瓦,以工频为主,从性质上来说,属于普通强迫振动。从机理上来看,振动与2 个因素有关,一是激

15、振力(轴振大小可反映来自转子上的激振力的大小),二是动刚度;与激振力成正比,与动刚度成反比。引起机组振动大故障的原因总的来说只有2 个,一是激振力过大,二是动刚度不足。(3)轴振随负荷升高而增大,是激振力增大引起的。升负荷过程中,68 瓦轴振增大,主要是工频分量的增大,表明转子上的不平衡量增加了。不平衡量包括2个部分,一是原始质量不平衡,二是热不平衡量。热不平衡来源,最常见的原因是碰摩和局部受热不均使转子产生临时热弯曲;由于碰摩与无功无关,考虑到发电机转子结构的特殊性,要注意匝间短路和冷却系统局部堵塞等问题。(4)瓦振随负荷升高而增大,与2 个因素有关:一是轴振增大导致瓦振增大;二是热负荷的影响使支撑动刚度降低,轴振不变的情况下仍可能使瓦振增大,具体表现为轴振、瓦振增大不成比例,如表1 所示。(5)瓦振与轴振比值偏大原因分析:支撑动刚度由结构刚度、连接刚度2 个要素组成。从TDM 历史数据及现场轴承座振动特性测试结果来看,存在支撑动刚度不足的问题。1)轴承座外部特性现场实测结果:沿轴向方向,从联轴器端到转子端(也即从外端到内端),58 号轴承座中分面垂直振动逐渐增大,内端比外端振动高出20m左右。存在一定的差别振动,表明存在受力不均的现象,导致连接刚度变差。2)从TDM 记录的超速试验过程瓦振Bode 图上发现,58 瓦轴振在3000r/

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号