生物制氢技术现状及其发展潜力.doc

上传人:人*** 文档编号:551097320 上传时间:2023-01-22 格式:DOC 页数:7 大小:46.51KB
返回 下载 相关 举报
生物制氢技术现状及其发展潜力.doc_第1页
第1页 / 共7页
生物制氢技术现状及其发展潜力.doc_第2页
第2页 / 共7页
生物制氢技术现状及其发展潜力.doc_第3页
第3页 / 共7页
生物制氢技术现状及其发展潜力.doc_第4页
第4页 / 共7页
生物制氢技术现状及其发展潜力.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《生物制氢技术现状及其发展潜力.doc》由会员分享,可在线阅读,更多相关《生物制氢技术现状及其发展潜力.doc(7页珍藏版)》请在金锄头文库上搜索。

1、 摘要:清洁的氢能是最有发展前景的替代能源之一,利用生物质资源的生物制氢成为氢能发展的必然趋势。文章介绍了生物制氢技术原理、特征、现状、障碍以及发展潜力,综述了目前主要的生物制氢技术进展概况,指出了光合细菌生物制氢技术具有显著优势,产氢潜力明显超过藻类制氢和厌氧发酵制氢等技术,是未来生物制氢技术发展的主导方向之一。 关键词:氢能;生物制氢;光合细菌;厌氧细菌;光解水;现状 Abstract:Clean hydrogen energy is one of the most perspective replaceable energy resources, and hydrogen generat

2、ion by using biomass resources becomes an inexorable trend for hydrogen energy development. The technological principle, characteristics, present situation, obstacle and developing potential for generating hydrogen energy from biomass resources were introduced. The current advances in main biologica

3、l hydrogen generating technologies were reviewed. The hydrogen generating technology using photosynthetic bacteria is remarkably advantageous in hydrogen generating productivity over other technologies including hydrogen production from aquatic plants, hydrogen production through anaerobic fermentat

4、ion. The hydrogen generating technology using photosynthetic bacteria will be one of the dominating development technologies for hydrogen generation in the future.Key words:Hydrogen energy; biological hydrogen generation; photosynthetic bacteria; anaerobic bacteria; photo-hydrolysis;status quo能源短缺和环

5、境污染是当前社会经济发展所面临的主要问题。自工业革命以来,以煤炭、石油、天然气为代表的化石能源时代逐步取代了过去以木材、秸秆为主的木质能源时代。近年来,世界经济的快速发展带来了对世界能源需求量的飞速增加。来自BP公司最新的报告显示,1973年世界一次能源消费量仅为57.3亿t石油当量,2002、2003、2005年分别达到94.05、97.4、102.24亿t石油当量,而2006年同比增长了2.7%。BP公司预测,按照目前开采量计算,全世界石油储藏量只能开采40年,天然气为65年,煤炭162年1。能源短缺成为限制世界经济发展的重要影响因素。尤其是20世纪70年代和80年代两次能源危机以来,解决

6、能源短缺,确保国家能源供给安全已成为各国政府考虑的首要因素,由此带来的利益争夺也成为当今世界部分地区动荡的主要因素2。 化石能源的使用在促进世界经济发展的同时也带来了严重的环境问题,由化石能源过度使用所带来的全球气候变化、酸雨、臭氧层破坏、荒漠化加剧、生物多样性减少已占据21世纪世界所面临十大主要问题中的5个2。因此,寻求可再生的清洁能源成为各国政府的重要课题。氢能因其清洁、能量密度高、制取方法多样、原料来源广而成为关注的焦点,美国、加拿大、欧盟、日本等将氢能技术置于社会和经济发展的优先地位,制定了有关氢能发展的国家计划,相继制定了有关氢能的“国家氢能路线图”,并由此提出了“氢能经济”、“氢能

7、社会”的概念35。为应对能源短缺和改善中国能源消费结构,中国政府也将氢能发展提到战略高度,在制定“氢能发展路线图”的同时提出“摆脱依赖石油的日子,创可持续发展的氢能未来”6。 1生物制氢机理目前,氢气的生产主要有化学法和生物法两种途径。利用化学方法制取氢气是目前较为成熟的制氢技术,其中以天然气、石油为主要原料的高温裂解、催化重整等方式制取的氢气成为工业用氢的主要来源,该方法对化石能源依赖性较大,同时在生产过程中还会造成一定的环境污染;电解水制取氢气是目前获取高纯氢气的主要技术方法,虽然该技术摆脱了对化石能源的依赖,但其在生产过程中需要消耗大量的电能作为代价,同时该反应需要在高温、高压或强酸强碱

8、的条件下进行,反应条件苛刻,电解电极昂贵,生产成本较高。目前商业用氢中96%来自于化石燃料进行催化重整,4%来自电解水7。 生物制氢是利用生物自身的代谢作用将有机质或水转化为氢气,实现能源产出。1931年,斯蒂芬森等人首次报道了在细菌中含有氢酶的存在后,Nakamura在1937年观察到光合细菌在黑暗条件下的放氢现象;1949年Gest报道了深红螺菌在光照条件下的产氢和固氮现象;随后刘易斯于1966年提出了利用生物制氢的概念7。生物制氢作为生物自身新陈代谢的结果,生成氢气的反应可以在常温、常压的温和条件下进行,同时生物制氢可采用工农业废弃物和各种工业污水为原料,原料成本低,可以实现废物利用和能

9、源供给与环境保护多重目标而倍受重视8,9。 根据所用的微生物、产氢原料及产氢机理不同,生物制氢可以分为光解水制氢、厌氧细菌制氢、光合细菌制氢等3种类型,其特点如表1所示。表1 不同生物制氢工艺的特点 项 目 优 点 缺点 绿 藻 以水为原料,太阳能转化率较高 产氢过程需要光照,光强度的影响较大,系统产氢不稳定,同时产生的氧对反应有抑制作用。 蓝细菌 以水为原料, 产氢主要由固氮酶完成,可以将大气中的N2固定 产氢过程需要光照, 产氢速率低,产生的氧对固氮酶有抑制作用 厌氧细菌 不需要光照,可连续产氢,可利用多种有机质做底物,产氢过程为厌氧过程,无氧气限制问题,系统易于实现放大试验 反应需控制p

10、H值在酸性范围内,原料利用率低,产物的抑制作用明显 光合细菌 产氢效率高,可利用多种有机废弃物作原料,可利用光谱范围较宽,不存在氧的抑制作用 产氢过程需要光照,不易进行放大试验 (1)光解水制氢是光合生物体在厌氧条件下,通过光合作用分解水,生成有机物,同时释放出氢气。其作用机理和绿色植物光合作用机理相似,在某些藻类和真核生物(蓝细菌)体内拥有PS、PS等两个光合中心,PS产生还原剂用来固定CO2,PS接收太阳光能分解水产生H+、电子和O2; PS产生的电子,由铁氧化还原蛋白携带,经由PS和PS到达氢酶,H+在氢酶的催化作用下形成H2。其中,利用藻类光解水产氢的系统称为直接生物光解制氢系统,利用

11、蓝细菌进行产氢的系统称为间接光解水产氢系统。藻类的产氢反应受氢酶催化,可以利用水作为电子和质子的原始供体,这是藻类产氢的主要优势。蓝细菌同时具有固氮酶和氢酶,其产氢过程主要受固氮酶作用,氢酶主要在吸氢方向上起作用。蓝细菌也能利用水作为最终电子供体,其产氢所需的电子和质子也来自于水的裂解10。 (2)厌氧细菌产氢是利用厌氧产氢细菌在黑暗、厌氧条件下将有机物分解转化为氢气。目前认为厌氧细菌产氢过程可通过丙酮酸产氢途径、甲酸分解产氢途径、通过NADH/NAD+平衡调节产氢途径等三条途径实现,丙酮酸产氢途径和甲酸分解产氢途径有时也称为氢的直接产生途径11,即葡萄糖首先通过EMP途径发酵形成丙酮酸、AT

12、P和NADPH;丙酮酸通过丙酮酸铁氧化还原蛋白氧化还原酶被氧化成乙酰辅酶A、CO2和还原性铁氧还原蛋白,或者通过丙酮酸甲酸裂解酶而分解成乙酰辅酶A和甲酸,生成的甲酸再次被氧化成CO2,并使铁氧化还原蛋白还原;最后,还原性铁氧化还蛋白还原氢酶,所形成的还原性氢酶当质子存在时便使质子还原生成氢气。 (3)光合细菌制氢是利用光合细菌在厌氧条件下通过光照将有机物分解转化为氢气。光合细菌是一类原始的古细菌,在光照条件下可以将有机酸转化为分子氢。自1949年美国生物学家Gest首次证明光合细菌(Rhodospirillum? rubrum)在光照条件下的产氢现象后,大量的研究表明,光合细菌产氢是与光合磷酸

13、化偶联的固氮酶的放氢作用下产生的。光合细菌只含有一个光合中心,且电子供体是有机物或还原态硫化物,所以光合磷酸化过程不放氧,且只产生ATP而不产生NAD(P)H。与绿藻和蓝细菌相比,这种只产氢不放氧的特性,可大大简化生产工艺,不存在产物氧气和氢气分离问题,也不会造成固氮酶的失活11。 2 生物制氢技术现状及其障碍氢能已成为两次能源危机后各国政府能源政策的支持重点,而生物制氢技术被公认为未来替代能源中最有应用前景的主要技术,成为目前世界能源科学技术领域的研究热点,促进了生物制氢技术的诸多进展。 作为生物制氢技术中研究最早的制氢途径,藻类(蓝细菌)能直接利用水和太阳光进行产氢,被认为最具有前途的制氢

14、途径,也是目前生物制氢中研究最多的技术。目前,美国、日本、欧盟、中国等在藻类分子生物学、耐氧藻类开发、促进剂等技术领域取得了突破性进展,并开发了各式生物反应器,完成了藻类制氢从实验室逐步走向实用的转化1316。但在藻类的产氢过程中同时伴随着氧的产生,反应产生的氧气除了能与生成的氢气反应外,还是氢酶活性的抑制剂,从而影响系统的产氢速率;同时当光强较大时,其主要进行CO2的吸收并合成所需的有机物质。因此,藻类产氢不稳定且易被其副产品氧气所抑制17,18。与藻类相似,蓝细菌在产氢的同时也会产生氧气,而氧是固氮酶的抑制剂。通过基因工程改变藻类的基因提高藻类的耐氧能力是目前的主要研究内容,并已取得了一些

15、进展19。 厌氧细菌产氢由于不依赖光照,在黑暗条件下就可进行产氢反应,容易实现产氢反应器的工程放大试验,加之厌氧细菌能利用多种有机物质作为制氢反应原料,可使多种工农业有机污水得到洁净化处理,有效地治理了环境污染,同时还产生洁净的氢气,使工农业有机废弃物实现了资源化利用,也被认为是较为理想的产氢途径,引起了国内外氢能科技工作者的青睐,尤其是中国在厌氧产氢细菌选育、产氢机理和工程技术等方面取得了令人瞩目的研究进展。但在研究中发现,该途径存在厌氧细菌在发酵制氢过程中的产氢量和原料利用率均比较低等问题。其主要原因是:从厌氧产氢菌细胞生存的角度看,丙酮酸酵解主要用以合成细胞自身物质,而不是用于形成氢气,

16、这是自然进化的结果;其次,反应过程中所产生氢气的一部分在氢酶的催化下被重新分解利用,降低了氢的产出率。同时在厌氧细菌的发酵产氢过程中pH 值必须在酸性范围以抑制产甲烷菌等氢营养菌的生长,但当pH4时,产氢菌的生长及产氢过程都受到明显的抑制。对厌氧细菌连续发酵产氢工艺系统而言,产氢代谢途径对氢分压敏感且易受末端产物抑制,当氢分压升高时,产氢量减少,代谢途径向还原态产物的生产转化。CO2 的浓度也会影响厌氧细菌产氢速率和产氢量,同时在连续的厌氧细菌产氢过程中,产氢细菌不能利用乙酸、丙酸、丁酸等小分子有机酸,造成有机酸的积累而对产氢细菌形成抑制作用。虽然乙酸对产氢细菌没有毒害作用,但大量乙酸积累会限制能源转化

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号