轮定位仪车辆连续跑偏质量问题解析

上传人:工**** 文档编号:548219205 上传时间:2022-11-05 格式:DOCX 页数:11 大小:112.23KB
返回 下载 相关 举报
轮定位仪车辆连续跑偏质量问题解析_第1页
第1页 / 共11页
轮定位仪车辆连续跑偏质量问题解析_第2页
第2页 / 共11页
轮定位仪车辆连续跑偏质量问题解析_第3页
第3页 / 共11页
轮定位仪车辆连续跑偏质量问题解析_第4页
第4页 / 共11页
轮定位仪车辆连续跑偏质量问题解析_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《轮定位仪车辆连续跑偏质量问题解析》由会员分享,可在线阅读,更多相关《轮定位仪车辆连续跑偏质量问题解析(11页珍藏版)》请在金锄头文库上搜索。

1、四轮定位仪车辆连续跑偏质量问题的解析一. MAZDA6批量路试跑偏质量问题我厂现在的主要产品是MAZDA6,该产品目前在我厂已经形成日产250辆份 的批量,并以优良的质量优势逐步获得市场的认同。但是该产品投产的前期,在设备部门坚持周期性标定控制的前提下,曾经无 规律地偶发零星批量车辆路试跑偏质量问题,但经过设备重复性标定的方法基本 可以解决。到2002年10月,突然发生大批量车辆路试方向性不合格质量问题。问题反 映为整车路试跑偏,或者方向盘偏。严重时,8天统计累计达到400多辆,约占 当时产量的50%o而且经过常规标定无法彻底恢复。由于该问题直接关联到检测线的四轮定位仪及产品自身问题,因此,以

2、设备、 工艺部门为主,进行了连续多天,上千辆份的跟踪测试、记录,最终得出一系列 有效的控制方法,从而使车辆跑偏的质量问题得以解决。二. 四轮定位仪的任务及工作流程要了解该质量问题的症结,必须彻底了解四轮定位设备的工作原理及工作流 程。同时也要了解产品工艺方面的相关信息。(-)四轮定位仪的任务四轮定位仪是一种整车方向性检测调整设备,通过四轮定位仪调整后的车辆 在行驶时,车辆行走轨迹在一定范围内应保持直线,不应出现跑偏现象,这将关 系到车辆行驶,特别是高速行驶的安全性,因此是整车装配的关键质量环节。四轮定位仪一般可以对以下项目进行检测调整:1. 前束。2. 外倾。3. 主销内倾角。4. 最大转向角

3、。5. 推力角。目前,我们的设备主要测试前后轮的前束、外倾,并计算推进角;同时,还 校正方向盘。(二)四轮定位仪工作流程在测试台全部原位的情况下,将被测车辆行驶到四轮定位仪上。整个测试流 程为:扫码一一过渡板收回一一轴距调整一一操作者按启动按钮一一车轮旋 转一一对中一一浮动板释放一一操作者安装方向盘一一地坑内操作者进行四轮调整一一调整合格一一测试结束一一车轮停止一一浮动板锁定一一对中退 回一一过渡板伸出一一打印测试结果一一车辆下线整个工作流程的主要环节解释如下:1. 扫码:通过扫码可以确定车辆出厂号并将测试结果打印,同时送入数据 库,作为车辆质保凭证。另一个作用是通过扫码,确定车型以改变设备轴

4、距及激 光传感器位置(四轮定位仪可适合多种车型混流生产)。2. 过渡板收回:使四个车轮完全与辗子接触,H的是让轨子带动车轮旋转。3. 对中:对中装置从外侧扶正车轮,对中合理压力为50公斤左右。4. 轴距调整:根据车型自动变换轴距,即使前后轨子中心距和被测车辆车 轮中心距相吻合。5. 车轮旋转:电机拖动輕子带动车轮旋转。6. 浮盘释放:车轮下面支撑的浮动板释放,使车身处于自由浮动状态。7. 安装方向盘规:安装方向盘规,校正方向盘,把车轮摆正。8. 四轮调整:根据屏幕显示的询束、外倾值手工调整轮胎位置。9. 测试结束:操作者将前束、外倾值调整到工艺要求的范围内,结束操作。三. 四轮定位仪测试原理分

5、析(-)四轮定位仪的基本测量结构四轮定位的精度主要取决于测试方法和测试结构,且二者有密切的关联。我 们的设备使用的是三传感器非接触式测量。所谓三传感器形式,是指用三个传感器进行测量。三个传感器成品字形布置, 分别处于9点、12点、3点钟位置。3点、9点传感器用来测量X方向的轮胎位 置数据,上面的12点传感器和底下两个的中点连线,用来测量轮胎Y方向的位 置数据。为平均误差,每个位置的距离实际上是采集许多个激光点的反射距离来平均 确认的。下图是一个激光头发射激光的局部示意图。12点激光头的发射光线3点激光头的发射光线图1:激光测量装置12点激光头前束和外倾的计算是利用每个轮胎测试的三个点形成的平面

6、倾角来计算的。 车轮询后中心径线和车辆前后中轴线的夹角称之为询束,车轮上下中心径线和地 面垂线的夹角称之为外倾。(二)四轮定位的控制结构测量的距离信号通过模数转换板进入到汁算机系统,经过数学分析讣算出前 束、外倾值。三个激光传感器组成一个测量树。这样的的激光树有四个,分别用于测量四 个轮胎。系统整体控制结构如下:强电控制激光测量树总线接口显示器(3个)条码工作站打印机I/O模块图2:激光测量系统控制结构四个车轮计算后的前束、外倾值动态显示在屏幕上,作为操作工人调整的口 视依据。(三)四轮定位算法过程四轮定位基本算法采用如下步骤:1. 测取车轮轮胎轮廓线激光系统通过发射激光及接收激光的方式,测量

7、车轮轮廓。通过连续的光束, 读取并用计算机模拟出车轮轮胎轮廓。这个轮廓包括车轮边沿及车轮本身的毛刺、字迹等“扰动”成分,是必须处 理的。图3:第一次测试后的模拟轮胎轮廓曲线2. 提取高点附近的计算区段厂家提出两种算法:1) 轮胎壁过滤算法一一经过过滤平滑处理,以消除轮胎变 形、毛刺及字母影响。2) 轮胎边缘跳动补偿一一去掉轮胎边缘及周期性的跳动。 经过以上处理,提取高点附近的一个区段的十儿个点的数据,进行后续运算。图4:经过过滤及补偿算法后的轮胎轮廓曲线3. 计算最高点在图3的基础上,从距离数据上筛选出最高点。图5:提取到最高点后的轮胎轮廓曲线图中的X号标志出轮胎的最高点,这个点成为前束及外倾

8、的计算依据。(四) 、前束、外倾的计算1. 计算前束假设:L:高点到激光头的距离,D:轮胎测试圆直径,Toe:前束,Cam: 外倾。“前”、“后”(9点钟、3点钟)指前后激光传感器。贝9:每次采集后计算的前束值为:Toeo=arctg (L 前-L 后)/D( 1)如果方向盘转角0不为零,则还要根据传动比X把方向盘对前束的影响折合 成一个角度叭,总前束的计算要把这个角度减掉。即:00 X X (2)实际前束为:Toe 二Toeo_ o 二Toeo_0 X X (3)2. 计算外倾假设3、9点钟传感器测量到的轮胎高点连线的中间点平均距离为L下:Cam=arctg2 (L 上-L 下)/D:=ar

9、ctg 2 L 上一(L 前 + L 后)/2 /D(4)其中,L下二(L前+ L后)/2在工人调整时,整个测量过程是动态的。测量结果可以动态显示在屏幕上, 操作者通过屏幕显示把握调整状态,直到调整合格为止。四. 路试跟踪情况及原因分解为了找到问题的症结,我们跟踪测试了上千台车,并现场记录了相关数据。 最终得出的车间反应为跑偏的问题主要有如下儿种:1. 路试中车辆行驶方向盘扶正后,车辆行驶中跑偏。我们的国家标准为0.5 米/百米,实测结果超过这个标准,实际约2米左右。2. 车辆行驶不跑偏,但方向盘偏,离散范围为1. 5-3. 5度。稳定时应在2 度以内,工艺控制为3度。3. 同一台车路试后重复

10、测量,前后数值不一致。4. 行驶不跑偏,但踩刹车时发生跑偏。5. 在调整正常允许范围内调整不到合格区段。这些问题都有一定比例,特别是第1、2种情况,占据全部问题车辆的80%。 但工艺、质量、车间等各部门普遍简单判定为设备问题。因此,需要甄别。我们的看法是:1. 第1、2个问题可能跟设备有关。2. 第3个问题可能反映出产品自身及前期装配过程中产生装配间隙,路试 后造成重复测试不一致。3. 第4个问题明显是两侧刹车间隙不同造成的,也反映为设备问题。4. 第5个问题应该是后桥悬架装配时,装配调整不合适,造成后桥调整中 心和四轮定位设备调整中心偏离过大。在上千组跟踪数据记录面前,判别思路变得相对清晰起

11、来。五. 造成四轮定位跑偏的相关原因分析车辆出现跑偏是四轮定位工序经常遇到的一个异常棘手的问题,产生问题的 原因非常复杂。由于它和整车质量息息相关,探讨它有其特殊的重要意义。经过一系列分析、检修、调整、试验,认为如下因素会对车辆跑偏造成影响:1. 四轮设备的标定:如果设备基准漂移或变化,会产生批量跑偏,多数跑 偏可以通过重新标定四轮定位仪来解决。2. 后悬架分装机:该设备用于后桥悬架装配及调整,控制不好,会对跑偏 产生影响。即出现上面的第5种情况。这时,可以检查其状态或重新标定。3. 车辆后悬系统设计问题:MAZDA的车辆也有少量跑偏现象,每天都有儿 台。他们认为是后悬系统的设计问题,目前,M

12、AZDA产品部门正在研究。4. 传感器信号通道故障:可以通过监视成像图象来比较。通过对十二个传 感器图形的比较,可以找到传感器是否有损坏。5. 对中器问题:厂家认为,对中器对调试影响很大。如果力量过大,会使 车轮变形,造成调整误差。最合适的压力在50公斤左右。6. 轴距问题:如果设备轴距不合适,加上我们的车辆轴距波动较大(10毫 米),可能造成浮动机构和设备固定结构的干涉,使调整结果受到影响。7. 环境干扰问题:环境光线对设备会造成影响。我们的设备在下午时,环 境光线很强,是否会有比较大的影响有待观察。必要时,可以采取遮光措施。8. 規子的中心高:左右楹子中心高是否在一个水平上将对测量结果产生

13、一 定影响。9. 浮动机构:是否有间隙,旋转是否灵活。10. 轮胎压力:轮胎压力必须均衡,否则也会影响跑偏。11. 整车装配间隙问题:MAZDA也认为悬架系统装配间隙偏大,这样就能解 释经过路试的车辆回来与路试前一致性不好的问题。这可以通过适当加长四轮调 整前的震动格栅的方法来解决。12. 方向盘水平:方向盘的调整基准如果不正确,对整车导向系统会造成不 良影响。这时,要重新校正方向盘倾角仪。13. 控制标准问题:我们的国家标准比日本更加严格。比如跑偏距离,我们 的国标是每白米允许0.5米,而日本是2米。标准上比较大的差异,是形成产品 设计控制不严的一个原因。而在我们路试中可能反馈为跑偏。14.

14、 左右置方向盘对调问题:日本MAZDA产品设计是右置方向盘,而我们改 为左置结构。大家都认为会带来影响,但影响多大有待确认。15. 推进角问题:MAZDA推进角设计偏大,认为会有轻微影响。16. 基准架与标定方法:基准架如果不出现磕碰,一般不会对跑偏构成影响。 它是通过三坐标测量的,厂家没有向我们交代过测试基准架的手段和方法。U前 我们使用的宝克公司设备测量基准架一共要测算72项数据,并输入到计算机系 统中。至于实际标定,我们的标定只标零度。而H前比较合理的标定形式,除零度 外,还标1度或者3度、5度等。这样实际上是既标零点,也标增益,更有利于 提高标定精度。17. 车体臥车体高度对跑偏有轻微

15、影响。前期底盘加高后,跑偏有一定程 度的改善。18. 测试方法问题:MAZDA公司要求调整后轮时,驾驶室不能上人,调整前 轮时,驾驶室要有人。这样做主要是考虑配重问题,他们认为这样会对调试结果 有影响。我们的工艺则没有这样的要求,但基本也能控制在公差范围内。以上因素,都和车辆跑偏有一定关系,因此,我们要和工艺、质量保证部门 共同探讨车辆跑偏的可能原因,以期得到正确的结论。六. 我们实际采取的措施结合以上分析,我们采取了如下措施:1. 检查更换激光传感器。经过测试和图象观察,发现一个传感器(LF)的成像只有两个点。但设备进 厂以来一直是这样,而且长期生产。我们认为它是不正常的,可能逐步质变,而 成为跑偏的主要原因。下图是该传感器的图形。图6:左前(LF)传感器成像我们更换了该传感器,发现跑偏率明显下降。2. 调整和标定后悬架装配机我们对该设备的机械装夹系统进行了精度调整,并对其精度进行了标定,控 制了悬架调整的偏差。使得悬架调整中心和四轮定位中心一致性获得改善。从而 改善了整车方向性调整。3. 对设备机械结构进行调整我们对四个浮动盘进行了清理和检修,同时对其水平状态进行了调整,使得 设备基本精度得到改善。其中,还

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号