局部通风机设计.doc

上传人:夏** 文档编号:547651105 上传时间:2024-03-23 格式:DOC 页数:28 大小:777.53KB
返回 下载 相关 举报
局部通风机设计.doc_第1页
第1页 / 共28页
局部通风机设计.doc_第2页
第2页 / 共28页
局部通风机设计.doc_第3页
第3页 / 共28页
局部通风机设计.doc_第4页
第4页 / 共28页
局部通风机设计.doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

《局部通风机设计.doc》由会员分享,可在线阅读,更多相关《局部通风机设计.doc(28页珍藏版)》请在金锄头文库上搜索。

1、摘 要目前,我国部分矿井在通风系统中采用了两级对旋式轴流式风机,以替代传统的轴流式风机,本次设计的BDJ局部通风机,其全称是:防爆对旋式轴流局部通风机,是对旋式风机的一种。其名称已经决定了风机的结构设计、材料选择等。本次设计力争突出BDJ风机独特的结构和优越的性能。气动部件的设计对于风机的整体性能至关重要,所以首先进行了风叶的设计,着重讨论了两级叶轮负载的分配问题,各参数的选择。采用孤立翼型法设计风叶。接着设计了其他的重要部件,如:集流器、整流罩、扩散器、风筒、消声结构等。然后对风机的叶轮、主轴进行强度校核,最后讨论风机的安装所遇到的问题。在风机各零部件材料的选择方面,要满足强度和防爆两方面的

2、要求。特别是风叶和风筒的材料,两者至少一个要采用铝合金材料。电动机的选择对于防爆风机来说是很重要的,本次设计选择了YBF电动机,这是专门的风机用防爆电动机,另一优点是重量轻,适宜安装在风机内部。关键词:BDJ风机 孤立翼型法 防爆1注: 目 录目 录1前言11.绪 论21.1 设计任务21.2 对旋式轴流风机51.3 BDJ风机72.叶轮设计92.1 设计方法92.2 设计要点92.3 叶轮主要参数的选取142.4 叶轮与轮毂的安装193. 风机各部件的设计203.1 风筒的设计203.2 集流器与整流体223.3 扩散筒243.4 风机底座263.5 法兰环与密封27结 论29总 结30致谢

3、31参考文献32前言随着各行各业的发展,特别是现代工业的发展,作为燃料和原料的煤炭越来越重要。我国大部分地区都是地下开采,在进行地下开采石油大量有害气体(如瓦斯、二氧化碳、一氧化碳等)和煤尘都会喷发出来,加之烟尘易爆,所以对井下工作人员和矿井安全都存在很大的威胁。我国煤矿安全规程对井下空气的成份(包括各种有害气体的浓度)、湿度、风速和按人员计算的风量都作了严格的规定:有人工作或可能有人到达的井巷,二氧化碳不得大于0.5% ,总会流中,二氧化碳不超过1%。为了保障广大煤矿职工有一个安全、可靠和良好的工作条件,必须向井下输送足够数量的新鲜空气,以冲淡有害气体的浓度和四处飞扬的煤尘。这次的毕业设计的

4、课题就是有“矿井肺脏”之称的通风设备。在采矿和地质勘探等工程中,必须开掘大量的井巷,而掘进这些井巷的特点是只有一个出口,所以称为独头巷道。独头巷道的通风常称为局部通风或掘进通风,其任务是将新鲜风流引至工作面,排除工作面的炮烟、矿尘等污浊空气,以保证工人在良好的条件下工作。我国煤炭行业近年来发展情况良好,特别是随着先进探测技术的应用,开采设备的改善,又开掘了许多新的井巷,所以局部通风机又有了用武之地。基于这种认识,我选定了这次毕业设计的题目:局部轴流式通风机。1.绪 论通风机是用于输送气体的机械,从能量观点来看,是把原动机的机械能转变为气体能量的一种机械。从气体压力升高的原理出发,主要可分为容积

5、式、叶片式和喷射式。其中叶片式风机可分为离心式、混流式、轴流式和横流式。本次设计只涉及到轴流式,所以在这里也只介绍轴流式风机。轴流式通风机已有悠久的历史,十九世纪已经应用于矿山和冶金工业上。由于当时工业等部门水平的限制。理论研究没有很好的开展。这种风机的全压为,而效率则只达。二十世纪初期,由于航空事业的迅速发展对机翼理论进行了广泛的实验研究,其研究结果大大促进了轴流式风机的发展。迄今,孤立叶型的升力理论和实验数据,仍然是轴流式通风机设计的主要依据之一。从三十年代开始,随着航空发动机的日新月异,对叶栅理论又进行了大量的实验研究,其研究结果即所谓平面叶栅实验数据,是设计轴流式压缩机或高压轴流式通风

6、计的主要依据。今天,在这种理论的推广运用下,轴流式通风机家族成员在不断增多,本次设计的局部通风机也是它的成员之一。目前轴流式风机,小的其叶轮直径只有100多毫米,大的直径可达20多米。最大流量的通风机其流量可达1500万每小时。风机的布置形式有立式、卧式和倾斜式三种,轴流式通风机很多是电机直联传动的。 下面就我设计的一些内容简单介绍如下,只要改变。2.叶轮设计2.1 设计方法目前,轴流通风机的设计方法主要有两种,一是利用单独翼叶对空气动力试验所得到的数据进行设计,称为孤立叶型设计法。另一种是利用叶栅的理论和叶栅的吹风试验结果来进行设计,成为叶栅设计法。对于轴流通风机来说,由于叶栅稠度不大,一般

7、,可以把叶片当作一个个互不影响的孤立叶片,按孤立叶型设计法设计,即假定孤立叶型的升力系数与叶栅升力系数相等。鉴于此法计算简便迅速、实验数据较完整、计算结果也较准确可靠,因而国内外都采用孤立叶型设计法设计轴流通风机,特别是对于压轴流风机,可获得很好的结果。其实无论采用何种叶型数据及计算公式,其基本理论都是一致的,只不过表现形式略有不同。由上面两种方法的比较,本次设计中对叶轮的设计采取孤立叶型。2.2 设计要点2.2.1 风机中负载的分配前后两级叶轮的负载关系所谓负载是指气流通过叶轮的压强增益。两级叶轮之间的负载分配是设计中的一个重要问题。第一级动叶是后扭型,而第二级是预扭型。重点讨论前后两级动叶

8、有相同转速的情况。这时,后者气流与叶片之间的相对速度比较大,这就决定了第二级的负载可以适当增大。若使第一级的负载大于第二级,显然是不合适的。由于第一级气流相对速度小于第二级(即使两级的负载相同,前后叶片的相对速度比值v1/v2范围是(0.70.8),要求第一级有相同甚至更大的负载,势必需要增大叶片的升力系数或迎角,但这是很有限度的,升力系数或迎角过大很容易引起气流分离甚至失速,出现气流脉动和叶片振动的现象,而且,脉动气流对第二级的影响更甚于第一级对于后者,气流脉动是全流场的,不像第一级那样一般仅发生在翼型后部。例如,有的对旋式通风机,第一级叶轮发生失速,将会导致第二级叶片出现更为剧烈的振动甚至

9、断裂。若第二级叶轮由较大功率的电机驱动可以使第二级的负载大于第一级。但一般前后两级电机功率相同,由于第二级气流相对速度大,虽然可能有比较大的负载,但速度大会使摩擦损失加大,因而效率降低,如在两级负载相同的情况,第二级叶轮效率比第一级下降6个百分点左右,因而电机功率消耗增大为1.1倍左右。实践中对旋式通风机经常发生第二级电机烧毁的现象,其根源在于工作条件恶劣以及功率消耗比较大。所以在前后两级叶轮由相同电机驱动的情况下,不应该使第二级的负载大于第一级。综上所述,应该使前后两级叶轮有相同的负载要求,即1/p2=1。2.2.2 两级叶轮速度三角形分析当两个叶轮的圆周速度相同时,其速度三角形如图3-1所

10、示。可看出第二级入口前的气流具有负的旋绕速度。图2-1 对旋轴流通风级叶轮的速度三角形对旋轴流通风机每个叶轮的气动计算方法和普通轴流通风的完全相同。在本次设计中采用了两台相同型号的电动机,则两级叶轮的圆周速度相同,且第二级叶轮出口气流旋绕速度非常小,可假设为零,同时分配每级所产生的理论全压为通风机理论全压得一半。在此条件下,使,致使第一级叶轮的负荷系数大于第二级的,加之,将导致每级叶轮的叶片数目、叶片宽度及叶片安装角等的不同,在以下的计算结果中都有所体现。2.2.3 叶型的选择从目前的资料来看,可用于孤立翼设计方法的翼型有三类。一是平底或接近于平底的翼型;二是等厚圆弧板翼型;三是NACA65系

11、列中的某些翼型。有一是MACA65系列中的某些翼型 由与NACA65系列自成体系,翼型及叶片中弧线的绘制方法与一般不同,在国内很少使用。已有的性能良好的机翼或螺旋叶型均可作为风机的翼型叶片的原始叶型。叶型的种类很多, 如:20世纪初英国发表的RAF-6E叶型,美国NACA(航空咨询委员会)早期研究发表的CLARKy叶型,参照英国LS型螺旋浆翼型加以修改而得到的LS叶型,德国哥廷根大学在20世纪初研究发表的葛廷根(Gottingen)叶型等。由对这几种叶型的研究可知,任何一种具有尖后缘的机翼叶型,都可在较宽广的攻角范围内工作。各种叶型的空气动力特性,只有数量上的差别,而无实质上的区分。因而可以说

12、,对已有的任何一种叶型,只要在无分离的攻角最佳范围内,均可被采用于设计中。圆弧板叶型的优点是制造方便,但效率比机械翼型叶片低。在风冷和一般通风换气用之轴流通风机上,这种圆弧板叶型应用较多。不同翼型的最佳升力系数、升阻比翼型相对厚度、失速性能及冀型形状等都有些差别。他们对叶片尺寸、全压效率、稳定工作区域及叶片制造难易等会有不同程度的影响,设计者可根据设计要求,对不同冀型的性能进行分析比较后,来选择合适的翼型。例如,小功率通风机从制造简便及降低成本等角度出发,可采用等厚圆弧板翼型;功率较大的通风机可选用机冀型翼型。为减小叶片尺寸可选用较大的翼型;为了提高效率可选用升阻比尽可能大的翼型;为了扩大通风

13、机稳定工作区域可选择脱流电推迟的翼型。为了得到高的全压系数,有时采用开襟翼型。在所查找的资料中,对旋式通风机翼型多选择LS翼型和圆弧板型,本次设计采用了LS翼型。图2-2 LS翼型LS叶型的截面尺寸列于下表表2-1 LS叶型截面尺寸距前缘坐标51020304050上表面坐标5.9127.869.6110.009.909.61距前缘坐标60708090r1r2上表面坐标8.737.475.723.691.2000.9注:1.r1为前缘相对半径,r2位后缘相对半径;2.中心距翼弦的距离;3.重心距翼型前缘的距离图2-3 LS叶型性能曲线2.2.4 电动机的选择本次设计中选用的是YBF系列隔爆型三相

14、异步电动机,是防爆轴流式通风机配套的专用电动机,防爆性能符合GB3836. 2-83爆炸性气体环境用隔爆型电器设备“d”的规定,并吸收国际上同类产品的优点自行设计制造的,具有体积小,效率高,温升裕度大、噪声低、启动及运行性能好等特点。该系列电动机制成隔爆型,防爆标志为d ,dAT4 ,dBT4,分别适用于煤矿井下及工厂A级、B级,温度组别为T1T4组的可燃性气体或蒸汽与空气形成爆炸性混合物的场所。防护等级:主题外壳IP44接线盒:IP54冷却方式:IC0141绝缘等级:B额定电压:380V额定频率:50Hz安装形式:IMB30型号说明图3-4YBF型号说明图2-5 YBF电机的结构图2.3 叶

15、轮主要参数的选取2.3.1 轮毂比轮毂比是一个重要的结构参数,对风机的压力、流量、效率等都有影响。因而,当通风机的压力、流量和转速为一定的情况下,轮毂比就不能任意选取。由下式 (2-1)可看出,轮毂比与风机的全压成正比,与成反比。说明,当风机的压力或压力系数较高时,应取较大的轮毂比。但轮毂比过大,叶片就过短,叶片流道中的气体流动损失增加,使风机性能恶化,效率降低,并增加尾部扩散筒的轴向尺寸。从式(2-1)还可看出,与和成反比。如果选取的圆周速度较大时,可以选择较小的轮毂比;对于风压高、流量小的风机,可去较大的值。但是,轮毂比过小,对风机的性能也是不利的,会引起叶片根部气流发生分离。另外,从结构方面看,轮毂比过小,会使叶片变得很长,给叶片的布置带来困难,尤其是在动叶可调的情况下,更是如此。一般轮毂比的选择范围是:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号