不确定性原理该如何理解看此文即可.doc

上传人:新** 文档编号:547645239 上传时间:2023-02-27 格式:DOC 页数:8 大小:387.54KB
返回 下载 相关 举报
不确定性原理该如何理解看此文即可.doc_第1页
第1页 / 共8页
不确定性原理该如何理解看此文即可.doc_第2页
第2页 / 共8页
不确定性原理该如何理解看此文即可.doc_第3页
第3页 / 共8页
不确定性原理该如何理解看此文即可.doc_第4页
第4页 / 共8页
不确定性原理该如何理解看此文即可.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《不确定性原理该如何理解看此文即可.doc》由会员分享,可在线阅读,更多相关《不确定性原理该如何理解看此文即可.doc(8页珍藏版)》请在金锄头文库上搜索。

1、第十四章 :不确定性原理,开启了一种新思维!很多人会用不确定性原理来说明这个世界的不确定,这个世界的不可捉摸。但我其实想说,不确定性原理是真的,但这也恰恰说明了世界是确定的。就是我们知道世界有不确定性的一面。但要清楚的知道,这种不确定性的一面是对我们而言的。别忘了我还说过:“世界是确定的,但世界的确定性你不能把握。”这在哲学上属于认识论的问题。坚持世界是可以认识的,就是唯物主义思想;坚持世界是不可认识的,就是唯心主义。那么究竟什么是不确定性原理?今天我们就来了解一下。不确定性原理(uncertainty principle,又译测不准原理)表明,粒子的位置与动量不可同时被确定,位置的不确定性越

2、小,则动量的不确定性越大,反之亦然。对于不同的案例,不确定性的内涵也不一样,它可以是观察者对于某种数量的信息的缺乏程度,也可以是对于某种数量的测量误差大小,或者是一个系综的类似制备的系统所具有的统计学扩散数值。维尔纳海森堡于1927年发表论文论量子理论运动学与力学的物理内涵给出这原理的原本启发式论述,希望能够成功地定性分析与表述简单量子实验的物理性质。所以原理又称为“海森堡不确定性原理”。同年稍后,厄尔肯纳德严格地用数学表述出位置与动量的不确定性关系式。 两年后,霍华德罗伯森(英语:Howard Robertson)又将肯纳德的关系式加以推广。类似的不确定性关系式也存在于能量和时间、角动量和角

3、度等物理量之间。由于不确定性原理是量子力学的基要理论,很多一般实验都时常会涉及到关于它的一些问题。有些实验会特别检验这原理或类似的原理。1925年6月,海森堡在论文运动与机械关系的量子理论重新诠释里表述出矩阵力学。矩阵力学大胆地假设,经典的运动概念不适用于量子层级,束缚在原子内部的电子并不具有明确定义的轨道,而是运动于模糊不清,无法观察到的轨道,其对于时间的傅里叶变换只涉及到因量子跃迁而产生的可以被观察到的电磁辐射的离散频率。海森堡在论文里提出,只有在实验里能够观察到的物理量才具有物理意义,才可以用理论描述其物理行为,其它都是无稽之谈。因此,他刻意避开任何涉及粒子运动轨道的详细计算,例如,粒子

4、随着时间而改变的确切运动位置,因为,这运动轨道是无法直接观察到的,替代地,他专注于研究电子跃迁时,所发射出的电磁辐射的离散频率和强度。他计算出代表位置与动量的无限矩阵。这些矩阵能够正确地预测电子跃迁所发射出光波的强度。同年6月,在阅读了海森堡的论文之后,马克斯玻恩发现,海森堡的数学运算原来就是他在学生时代学到的矩阵微积分。另外,在分别表示位置与动量的两个无限矩阵之间存在着一种很特别的关系正则对易关系,但是,他们并不了解这重要结果的意义,他们无法给予合理的诠释。1926年,海森堡任聘为哥本哈根大学尼尔斯玻尔研究所的讲师,协助尼尔斯玻尔做研究。隔年,他发表了论文论量子理论运动学与力学的物理内涵,在

5、这篇论文里,他严格要求遵守实证主义:只有在可以设定的实验环境下对于粒子的某种数量做测量,则这数量才具有物理意义,否则这数量不具有任何物理意义。他接着解释,任何实验测量都会遭遇误差,因此,这数量的物理意义也只能被确定至某种程度。例如,假设使用显微镜来测量粒子的位置,对于粒子的位置的测量会不可避免地搅扰了粒子的动量,造成动量的不确定性。海森堡紧跟着给出他的不确定性原理:越精确地知道位置,则越不精确地知道动量,反之亦然。不确定性原理能够直接地诠释位置与动量的正则对易关系:假若测量位置不会搅扰动量,测量动量不会搅扰位置,则测量位置与动量不需要顾虑到先后关系,位置与动量的正则对易关系会变为:displa

6、ystyle x,p=xp-px=0。除了位置-动量不确定性关系式以外,最重要的应属能量与时间之间的不确定性关系式。能量-时间不确定性关系式并不是罗伯森-薛定谔关系式的明显后果。但是,在狭义相对论里,四维动量是由能量与动量组成,而四维坐标是由时间与位置组成,因此,很多早期的量子力学先驱认为能量-时间不确定性关系式成立:可是,他们并不清楚tdisplaystyle Delta tt 的含意到底是什么?在量子力学里,时间扮演了三种不同角色:1、时间是描述系统演化的参数,称为“外在时间”,它是含时薛定谔方程的参数,可以用实验室计时器来量度。2、对于随时间而演化的物理系统,时间可以用动态变量来定义或量

7、度,称为“内秉时间”。例如,单摆的周期性震荡,自由粒子的直线运动。3、时间是一种可观察量。在做衰变实验时,衰变后粒子抵达侦测器的时刻,或衰变后粒子的飞行时间是很重要的数据,可以用来找到衰变事件的时间分布。在这里,时间可以视为可观察量,称为“可观察时间”。列夫朗道曾经开玩笑说:“违反能量-时间不确定性很容易,我只需很精确地测量能量,然后紧盯着我的手表就行了!”尽管如此,爱因斯坦和玻尔很明白这关系式的启发性意义:一个只能暂时存在的量子态,不能拥有明确的能量;为了要拥有明确的能量,必须很准确地测量量子态的频率,这连带地要求量子态持续很多周期。各位,在这里提醒一下,这个问题相当关键和严重。我有心展开讨

8、论时间在量子系统中的情况,但苦于没有思路。在这里就不再展开讨论。就像爱氏和玻尔所意识到的:“一个只能暂时存在的量子态,不能拥有明确的能量。”我希望你可以看了这篇文章之后,如果有思路,可以写一篇文章出来。接着上面举例,例如在光谱学里,激发态的寿命是有限的。根据能量-时间不确定性原理,激发态没有明确的能量。每次衰变所释放的能量都会稍微不同。发射出的光子的平均能量是量子态的理论能量,可是,能量分布的峰宽是有限值,称为自然线宽。衰变快的量子态线宽比较宽阔;而衰变慢的量子态线宽比较狭窄。衰变快的量子态的线宽,因为比较宽阔,不确定性比较大。为了要得到清晰的能量,实验者甚至会使用微波空腔来减缓衰变率。这线宽

9、效应,使得对于测量衰变快粒子静止质量的工作,也变得很困难。粒子衰变越快,它的质量的测量越不确定。关于不确定性原理所引发的学术和哲学论战至今还在持续。早些年爱因斯坦认为,不确定性原理显示出波函数并没有给出一个粒子的量子行为的完全描述;波函数只预测了一个粒子系统的概率性量子行为。玻尔则主张,波函数已经给出了关于一个粒子量子行为的描述,从波函数求得的概率分布是基础的,一个粒子只能拥有明确的位置或动量,不能同时拥有两者。这是不确定性原理的真谛,如同俗语鱼与熊掌不可兼得,一个粒子不能同时拥有明确的位置与明确的动量。两位物理大师的辩论,对于不确定性原理以及其所涉及的种种物理问题,延续了很多年。21世纪最初

10、十年里获得的一些实验结果对于不确定原理的适用范围持严格怀疑态度。在第二章中,我就介绍了EPR之争,这与不确定性原理也有关系。所以大家回顾一下。 1935年,爱因斯坦、鲍里斯波多尔斯基、纳森罗森共同发表了EPR吊诡,分析两个相隔很远粒子的量子纠缠现象。爱因斯坦发觉,测量其中一个粒子A,会同时改变另外一个粒子B的概率分布,但是,狭义相对论不允许信息的传播速度超过光速,测量一个粒子A,不应该瞬时影响另外一个粒子B。这个佯谬促使玻尔对不确定性原理的认知做出很大的改变,他推断不确定性并不是因直接测量动作而产生。从这思想实验,爱因斯坦获得益愈深远的结论。他相信一种“自然基础假定”:对于物理实在的完备描述必

11、须能够用定域数据来预测实验结果,因此,这描述所蕴含的信息超过了不确定性原理(量子力学)的允许范围,这意味着或许在完备描述里存在了一些定域隐变量(hidden variable),而当今量子力学里并不存在这些定域隐变量,他因此推断量子力学并不完备。1964年,约翰贝尔对爱因斯坦的假定提出质疑。他认为可以严格检验这假定,因为,这假定意味着几个不同实验所测量获得的概率必须满足某种理论不等式。依照贝尔的提示,实验者做了很多关于这佯谬的实验,获得的结果确认了量子力学的预测,因此似乎排除了定域隐变量的假定。但这不是故事的最后结局。虽然,仍可假定“非定域隐变量”给出了量子力学的预测。事实上,大卫波姆就提出了

12、这么一种表述。对于大多数物理学家而言,这并不是一种令人满意的诠释。他们认为量子力学是正确的。关于不确定性原理海森堡自己说过这样一句话:“在因果律的陈述中,即若确切地知道现在,就能预见未来,所得出的并不是结论,而是前提。我们不能知道现在的所有细节,是一种原则性的事情。”我个人认为这句话深刻的揭示了,海森堡对于不确定性原理的认识是根本的。“我们不能知道现在的所有细节,这是一种原则性的事情。”即量子世界,甚至宇宙宏观的非线性运动的确切性,不是我们可以把握的,不确定性原理是必然存在的。但世界是确定的。可以有这个思想实验,来理解。假若我们就是粒子本身,假如我们能突破这“原则性”事件,那么世界就是确定的。

13、位置和速度也是确定的。事件的矛盾性推动了世界和宇宙的发展,但事件的矛盾性不阻碍世界的确定性。这是哲学问题,也是物理问题。如果大家承认哥德尔不完备是完整的数学表述,数学工具对于物理而言也是实用和适用的。那么哥德尔不完备定理也是物理定理! 认识到这一点,那么迷茫人就不会迷茫,量子世界的确定性,就是这样来显示的。 有的同学会问了:“上面你介绍了这么多,现在这么说,是在开玩笑吗?”不,我严肃的说,我没有开玩笑。量子力学中的粒子在任意时刻都有位置和动量,这是存在的! 我们的实验使得我们知道这是存在的,但是是测不准的。好了,这就是我们要问的,也是上面反复已经提到的问题了。 为什么测不准?原因是什么? 各位

14、激动人心的时刻,有时候不在于回答一个问题,而是提出一个问题!我希望你此刻是这样感觉的。最反复提到的就是测量的干扰,那么如果我是粒子本身,干扰将剔除。【不以人类的角度来看。】很多时候,不要以人类的思维来理解这个世界,而要以自然的思想来理解自然,粒子的思维来理解粒子世界,那么一切都是清晰的。但我们确实不是粒子本身,这就是我们不可把握的事情。这就是海森堡为什么说:“我们不能知道现在的所有细节,这是一种原则性的事情。” 但并不是说,现在的所有的细节并不存在!我还可以用这样一句话来表述我的思想:“世界的确定性存在于我们的想象之中,不存在的现实之中。”无论你相不相信,这个世界不是线性的。就像爱氏的场方程,

15、为什么很难得出一个确切解? 量子世界为什么测不准? 如果你把这些不联系起来,认为这是偶然,那就失去了接近真相的机会了。宇宙非线性波动和量子世界的非线性波动是有联系的,我们一定要这样去写方程。也就是说爱氏的“大统一”理论观点是没有错的。科学研究的事实也证明,我们统一了很多原来认为是不同“场”。现在只有引力没有纳入到这个“大统一”理论中来,我也分析过原因。就是时空背景的弯曲问题。在这里就不细讲,可以在我的科普书籍变化中看到。 我再次重申,世界是确定的,这是我们存在的意义;如果世界是不确定的,我们也将失去存在的意义坐标。现在来问大家一个问题:“一个粒子具有波粒二象性吗?比如一个电子是波,还是粒子?”

16、各位如果你细心,其实玻尔和爱氏已经讨论过了。即如下内容:爱因斯坦认为,不确定性原理显示出波函数并没有给出一个粒子的量子行为的完全描述;波函数只预测了一个粒子系统的概率性量子行为。玻尔则主张,波函数已经给出了关于一个粒子量子行为的描述,从波函数求得的概率分布是基础的,一个粒子只能拥有明确的位置或动量,不能同时拥有两者。这是不确定性原理的真谛。再问你一个问题:“最小的距离是多少?”你肯定没有答案,因为人类没有对这个做过定义。换个问题就是“多少距离的波长没有波动性质?”“一米的绳子可以切多少次?”所以电子是具有波粒二象性的。单个粒子也是波!这个有点不好想象。确实我也这么认为,但还要这么想!不是我疯了,是这个世界本来如此。甚至可以这样表述:“一切具有运动性质的物质,都是具有波动性质的!”结果就是万物都有波动性质!这个思维大家要记住,这对后面介绍的

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 理学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号