天然气现场制氢新工艺的研究.doc

上传人:re****.1 文档编号:547633336 上传时间:2022-09-27 格式:DOC 页数:17 大小:125KB
返回 下载 相关 举报
天然气现场制氢新工艺的研究.doc_第1页
第1页 / 共17页
天然气现场制氢新工艺的研究.doc_第2页
第2页 / 共17页
天然气现场制氢新工艺的研究.doc_第3页
第3页 / 共17页
天然气现场制氢新工艺的研究.doc_第4页
第4页 / 共17页
天然气现场制氢新工艺的研究.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《天然气现场制氢新工艺的研究.doc》由会员分享,可在线阅读,更多相关《天然气现场制氢新工艺的研究.doc(17页珍藏版)》请在金锄头文库上搜索。

1、天然气现场制氢新工艺的研究天然气现场制氢新工艺的研究内容纲要天然气现场制氢的意义及优势天然气现场制氢的新工艺总结与展望研究背景分散站制氢规模集中制氢ON-BOARD FUEL PROCESSING GO/NO-GO DECISION DOE DECISION TEAM COMMITTEE REPORT , August 2004车载制氢设备投资大氢气储运、分配困难启动时间(10min)启动能量(7MJ/50kw)天然气现场制氢优势原燃料比较充足(天然气水合物)天然气清洁,能量密度大供给方便(完善的输运管道)制氢成本低,是目前最廉价的制氢方式之一天然气水蒸汽转化CO高温变换CO低温变换CO甲烷化

2、CO2脱除H2分离天然气水蒸汽重整制氢(大规模)US$31.665/kg H2天然气水蒸汽重整制氢(小规模)US$ 12 /kg H2目前天然气水蒸汽规模制氢与现场制氢的成本比较高成本高成本现有天然气水蒸汽重整工艺用于现场制氢是极其昂贵的,开发现场制氢新工艺与新技术已成为当务之急 !重点:1. 产氢,纯化一体化,技术集成,缩短工艺流程; 2.装置投资小,生产成本低;天然气现场制氢的技术路线天然气水蒸汽重整CH4+H2O=CO+3H2, H298K= 206kJ/mol CH4+2H2O=CO2+3H2, H298K= 165kJ/mol CH4+2O2=CO2+2H2O,H298K= -804

3、 kJ/mol天然气自热重整CH4+0.5O2=CO+2H2, H298K=-36 kJ/mol CH4+H2O=CO+3H2, H298K=206kJ/molCH4+2H2O=CO2+3H2, H298K=165kJ/mol产氢纯度高,分离相对易,但能效相对不高能量效率高,但分离能耗相对较大天然气现场制氢新工艺集成换热式(反应耦合)循环利用热流:壁式反应器,两段式反应器,多层套筒式反应器降低传热传质阻力:板式反应器,微通道反应器净化纯化式制备高纯度H2 :膜反应器降低CO排放:双层催化剂无CO反应器 壁式反应器Theophilos Ioannides, Xenophon E. Verykio

4、s, Development of a novel heat-integrated wall reactor for the partial oxidation of methane to synthesis gas, Catalysis Today 46 (1998) 71-81University of Patras, Greece反应器由陶瓷管组成,陶瓷管内表面沉积燃烧催化剂层,外表面沉积重整催化剂层原料从里面的管子进入后被外层的出口气体预热,在反应区发生反应,放出的热量通过管壁传到外层,在那里发生吸热的重整反应。循环利用热流 两段式重整反应器Fraunhofer Institute ,

5、Germany 甲烷和水作为冷料通入换热器中与燃烧尾气换热,被加热至450600进入一次重整器中进行重整反应(热量来自燃烧尾气的对流换热)进入二次重整,热量来自陶瓷燃烧器的直接热辐射Vogel, B., G. Schaumberg, A. Schuler, 1998, .Hydrogen Generation Technologies for PEM Fuel Cells,. 1998 Fuel Cell Seminar Abstracts, November 16-19, 1998, Palm Springs, CA, pp. 364-367.循环利用热流 多层套筒式重整反应器A novel

6、 steam reforming reactor for fuel cell distributed power generation, California Energy Commission, May 2000存在问题:传热阻力较大 系统较庞大循环利用热流 板式反应器催化剂层板的厚度很薄,大大提高了反应器的结构紧凑性,降低了传热与传质阻力板式反应器的效率比传统水蒸汽重整器高一个数量级,而体积和催化剂重量低2个数量级板式反应器的换热效率提高。壁面和气相截面温度分布更均匀M. Zanir, A. Gavriilidis, Catalytic combustion assisted methan

7、e steam reforming ina catalytic plate reactor, Chemical Engineering Science 58 (2003) 3947 3960存在问题:催化剂涂覆困难 降低传热传质阻力 微通道反应器 Picture of a Velocys manufacturing scale-up microchannel reactor (Pacific Northwest National Laboratory)微通道可把传热传质速率提高12个数量级由于过程强化降低了操作成本均匀布氧,先部分氧化后完全燃烧为原料预热和重整供热A.Y. Tonkovicha

8、, S. Perrya, W.A. Rogers, Microchannel process technology for compact methane steam reforming, Chemical Engineering Science 59 (2004) 4819 4824存在问题: 反应器加工成本高 通道阻力降大降低传热传质阻力 集成化膜反应器Yu-Ming Lin, Min-Hon Rei, Process development for generating high purity hydrogenby using supported palladium membrane r

9、eactor as steam Reformer, International Journal of Hydrogen Energy 25 (2000) 211219CH4存在问题:钯膜具有氢脆现象,如何增强稳定性?净化纯化式 两层催化剂无CO水蒸气制氢反应器Vladimir Galvita a, Kai Sundmacher, Hydrogen production from methane by steam reforming in a periodically operated two-layer catalytic reactor, Applied Catalysis A: Gener

10、al 289 (2005) 121127Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, GermanyStep 1:ReductionPt-CeO2-ZrO2Fe3O4-CeO2-ZrO2CH4CO+H2H2O+CO2H2H2OH2O+H2Pt-Ce2O3-ZrO2Fe-Ce2O3-ZrO2Step 2:Re-oxidation存在问题:催化剂表面沉积碳,实际应用?净化纯化式 总结与展望将重整制氢,供热,纯化一体化,实现过程强化、系统高度集成是降低制氢成本的出路集成换热式(热量耦合)净化纯化式

11、(降低成本)现场制氢新工艺要真正走向实际应用,还需切实解决自身的关键技术,扬长避短谢谢大家! 参考文献1.ON-BOARD FUEL PROCESSING GO/NO-GO DECISION, DOE DECISION TEAM COMMITTEE REPORT , August 20042.Theophilos I, Xenophon E. Verykios, Development of a novel heat-integrated wall reactor for the partial oxidation of methane to synthesis gas, Catalysis

12、Today 46 (1998) 71-813.M. Zanir, A. Gavriilidis, Catalytic combustion assisted methane steam reforming in a catalytic plate reactor, Chemical Engineering Science 58 (2003) 3947 39604.Vogel, B., G. Schaumberg, A. Schuler, and A. Henizel, 1998, .Hydrogen GenerationTechnologies for PEM Fuel Cells,. 199

13、8 Fuel Cell Seminar Abstracts, November 16-19, 1998,Palm Springs, CA, pp. 364-367.5. A.Y. Tonkovicha, S. Perrya,W.A. Rogersa, Microchannel process technology for compact methane steam reforming, Chemical Engineering Science 59 (2004) 4819 48246. Vladimir G, Kai S, Hydrogen production from methane by

14、 steam reforming in a periodically operated two-layer catalytic reactor, Applied Catalysis A: General 289 (2005) 1211277.A novel steam reforming reactor for fuel cell distributed power generation, California Energy Commission, May 2000参考文献(续)8. Yu M L, Min H R, Process development for generating hig

15、h purity hydrogen by using supported palladium membrane reactor as steam Reformer, International Journal of Hydrogen Energy 25 (2000) 211-219 9. S Lin, Y Chen, C Lee, Dynamic modeling and control structure design of an experimental fuel processor, International Journal of Hydrogen Energy (in press)10.Sheldon Lee, Daniel V. A, Shabbir A, Hydrogen from natural gas: part Iautothermal re

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号