《数学专业毕业论文-微元法的研究及应用.doc》由会员分享,可在线阅读,更多相关《数学专业毕业论文-微元法的研究及应用.doc(21页珍藏版)》请在金锄头文库上搜索。
1、 山东轻工业学院2011届本科生毕业论文 摘 要1第一章 微元法理论11.1选题意义及微元法的产生背景11.2微元法理论简介21.2.1预备知识-定积分的定义21.2.2微元法的引入31.2.3微元法的实质及解题步骤4第二章 微元法的应用52.1微元法在几何中的应用52.1.1微元法证明一类积分学公式52.1.2微元法在几何学中的具体应用82.2微元法在物理学中的应用132.2.1概述微元法在物理中的应用132.2.2微元法在大学物理中的应用13摘 要微元法是处理微积分问题的重要方法,微元法的使用使原本复杂的积分问题变得容易处理。本文将给出微元法的原理、使用方法及使用条件,使对微元法有更深刻的
2、认识,然后介绍微元法在几何学、物理上的应用,解决一些具体的实际问题,并研究如何使用微元法更加简单、高效。关键词:微元法 微元法 几何应用 物理应用 ABSTRACTMicro-element method is an important treatment method for calculus problems. The use of Micro element method make originally complex integral problem becomes easy to deal with. This paper will give the principle of mic
3、ro-element method, the use of methods and conditions of use of micro-element method to gain a deeper understanding. Then introduce applications of micro element method in geometry and physics to solve specific practical problems and learn how to use micro-element method is more simple and efficient.
4、Key words: micro-element method; micro-element; geometric applications; physics application; 第一章 微元法理论1.1选题意义及微元法的产生背景数学的思想、精神、文化对于人类历史文化变革有着重要的影响。数学文化价值的研究有利于促进社会的发展,有利于加强对自然科学的认识,有利于提高素质教育水平。数学:打开科学大门的钥匙, 科学史表明,一些划时代的科学理论成就的出现,无一不借助于数学的力量。早在古代,希腊的毕达哥拉斯(Pythagoras)学派就把数看作万物之本源。享有“近代自然科学之父”尊称的伽利略(G.
5、 Galileo)认为,展现在我们眼前的宇宙像一本用数学语言写成的大书,如不掌握数学的符号语言,就像在黑暗的迷宫里游荡,什么也认识不清。没有数学就没有自然科学的发展;没有数学就没有现代科学技术的发展;没有数学,哲学就会失去支撑,人类就会处于原始生活状态。因此,没有数学,人类将无法实现全面发展,素质教育也将面临极大挑战,数学文化价值的研究将有利于全面提高个人整体素质。由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学是微分学和积分学的统称,微积分是与应用联系发展起来的,它是数学的一个重要的分支,其应用与发展已广泛的渗透到了物
6、理学,化学,经济学等各个自然科学之中,是我们学习各门学科的重要工具。它的创立,被誉为“人类精神的最高胜利”。在数学史上,它的发展为现代数学做出了不朽的功绩。恩格斯曾经指出:微积分是变量数学最重要的部分,是数学的一个重要的分支,它实现带科学技术以及自然科学的各个分支中被广泛应用的最重要的数学工具。凡是复杂图形的研究,化学反映过程的分析,物理方面的应用,以及弹道气象的计算,人造卫星轨迹的计算,运动状态的分析等等,都要用得到,微积分学这门学科在数学发展中的地位是举足轻重的,可以说它是继欧式几何后,全部数学中最大的一个创造。微积分学的应用帮助社会学、心理学、商学和经济学等许多领域取得巨大的进步,这其中
7、最重要的事情就是微元分析法帮助我们建立了各种纷繁复杂的实际问题的数学模型。微元法是伴随着微积分的产生而产生的,随着对微积分研究的不断深入,微元法在积分学中的地位越来越重要,微元法的使用使原本复杂的微积分问题变得容易处理,微元法的应用十分广泛,几何图形的体积,表面积,弧长;物理中做功,流体,电场问题都可用微元法处理。1.2微元法理论简介1.2.1预备知识-定积分的定义应用定积分解决实际问题时,通常并不是通过定积分定义中的四步曲“分割,取近似,求和,取极限”得到定积分表达式的,而是利用步骤更简单的微元法(又称元素法)得到定积分表达式微元法思想是微积分的主要思想,它在处理各类积分的应用问题中是一脉相
8、通的,也是学好各类积分的理论依据,微元法理论是通过定积分的定义演化而来的要想深刻理解微元法需要先了解定积分的定义设函数在上有界,若对任意分法,令,任取,只要时,趋于确定的值 ,则称此极限值为函数在区间上的定积分,记作,即,此时称在上可积。 计算 曲边梯形面积的具体步骤:1)分割在区间中任意插入个分点,用直线将曲边梯形分成个小曲边梯形;2)局部近似在第个窄曲边梯形上任取,作以为底,以为高的窄矩形,并以此窄矩形面积近似代替相应窄曲边梯形面积,得。3)求和 4)取极限令,则有1.2.2微元法的引入我们从计算曲边梯形面积等问题来导出定积分概念时, 是通过“分割、近似代替、求和、取极限”这样四个步骤把所
9、求量(曲边梯形面积等表示为一个定积分,从而求出其值的因为能用定积分表示和计算的实际问题非常广泛, 所以我们希望简化上述求值过程的四个步骤,而得出一种简便、实用、迅速、有效的方法和模式。 定积分是分布在区间上的整体量因为整体是由局部组成的,所以将实际问题抽象为定积分必须从整体着眼,从局部入手具体做法是:首先将区间上的整体量化成区间上每一点的微分,亦称微元,这是“化整为零”其次对区间上每一点的微分无限累加,连续作和,这是“积零为整”,从而得到了欲求的定积分这种方法称为微元法。 一般地, 若某一实际问题中的所求量符合下列条件,便可以考虑用定积分来表示这个量(1)是与一个变量的变化区间有关的量;(2)
10、对于区间具有可加性, 就是说如果把区间分成许多部分区间,相应地分成许多部分量, 而等于所有部分量之和;(3)在中任一微小区间上的分量,误差是 的高阶无穷小,即当 时,。那么就可以考虑通过微元法用定积分来表示这个量。1.2.3微元法的实质及解题步骤 微元法实质是把求累加量问题转化为定积分计算的简化,它省却了分微段、近似求和等过程,直接由微元累积导出积分。微元法是指通过从分析事物的极小部分入手,达到使事物的整体问题得以解决的一种方法. 运用微元法, 在一定的条件下可以把变化的、运动的、物理规律不适用的整体对象或整体过程转化为不变的、静止的、物理规律适用的元对象或元过程, 即变为理想的对象或过程.
11、微元法可以是把研究物体取微元部分进行分析,也可以是把研究过程取微元阶段进行分析. 微元法的基本数学工具是有关近似、极限、数列知识以及几何、三角中的知识。一般情况下,应用问题的变化是非均匀的,但在局部变化的一瞬间,改变量可近似地看成是均匀变化的,这一瞬间的改变量往往正是。 但注意,用近似代替时,要求误差是的高阶无穷,即成立。对某些特殊问题,凭借直观图形得出的有时是错误的,所以使用微元法应注意。用微元法求定积分表达式的具体步骤是:微元法示意图(1) 根据问题,选取一个变量如为积分变量,并确定它的变化区间;(2)设想把区间分成个小区间,取其中任一个小区间记,求出相应的部分量的近似值:,称为量的元素或
12、微元,记为 ;(3) 以的元素为被积表达式,在区间上作定积分,则得第二章 微元法的应用2.1微元法在几何中的应用2.1.1微元法证明一类积分学公式1)平面曲线弧长计算公式定理1 设平面曲线,,为光滑曲线( 即与在上连续且,则曲线的弧长为证明 取参数为积分变量,它的变化区间为,相应于上任一小区间的小弧段, 即 2)旋转曲面面积计算公式定理2 设平面光滑曲线的方程为 ,则由曲线绕轴旋转一周所得曲面面积为证明 在点分别作垂直于轴的平面, 它们在旋转曲面上截下一条狭带。当很小时,此狭带的面积近似于一圆台的侧面积, 即其中 由于 因此由的连续性有 其中 故 则3)曲面面积计算公式定理3 设为可求面积的平
13、面有界区域, 函数在上具有连续的一阶偏导数, 则由方程,所确定的曲面的面积证明 在区域内任取一点并在区域内取一包含点的小闭区域其面积也记为在曲面上点处作曲面的切平面T,再作以小区域的边界曲线为准线、母线平行于轴的柱面。将含于柱面内的小块切平面的面积作为含于柱面内的小块曲面面积的近似值, 记为。又设切平面T的法向量与轴所成的角为,则 这就是曲面的面积微元。于是曲面的面积为4)平面上第一型曲线积分计算公式定理4 设有平面上光滑曲线 ,, 函数为定在上的连续函数,则 证明 根据第一型曲线积分的定义,曲线的参数方程为, 则有弧长微元得 故5)平面上第二型曲线积分计算公式定理5 设有平面上光滑曲线,为上
14、的有向光滑曲线,又设,为L上的连续函数,则沿从到的第二型曲线积分证明 下证不妨设对应于点与曲线的方向一致的切向量为为切向量与轴正向所成夹角,所以 从而 所以 同理可故有6)第一型曲面积分计算公式定理6 设有光滑曲面,为上的连续函数,则有证明 曲面由方程给出,那么曲面的面积微元为故2.1.2微元法在几何学中的具体应用1)求平面图形的面积前一节已经利用微元法证明了一些积分学公式,这里给出如何用微元法解决具体问题。例1计算由抛物线与直线所围成的平面图形的面积。解 如图 抛物线与直线的交点,。它的变化范围是,在其上任取子区间,则得面积微元,于是面积 图1=18若选横坐标x为积分变量,它的变化范围为,在上,面积微元; 在上,面积微元,因而面积:这里选取为积分变量, 计算过程简便一些。2)求极坐标下平面图形的面积设曲线的极坐标方程为:,。下图为曲边扇形。积分变量,且;,则;。例1求心型线所围图形的面积()。解:由对称性,只需求出图中阴影部分的面积即可。由图可知时,;时,;即。 例2求曲线以及内的公共部分的面积。解:由图形的对称性,只需考虑第一象限部分的面积。联立,解得;令,解得。从而 2)利用微元法求旋转体的体积设连续曲线方程为,且;将、与轴所围成的曲边梯形绕轴旋转一周,求所得旋转体的体积。旋转轴是轴,则截面面积为:,其中是