外文翻译--制动系统.doc

上传人:桔**** 文档编号:546624473 上传时间:2023-09-18 格式:DOC 页数:15 大小:2.66MB
返回 下载 相关 举报
外文翻译--制动系统.doc_第1页
第1页 / 共15页
外文翻译--制动系统.doc_第2页
第2页 / 共15页
外文翻译--制动系统.doc_第3页
第3页 / 共15页
外文翻译--制动系统.doc_第4页
第4页 / 共15页
外文翻译--制动系统.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《外文翻译--制动系统.doc》由会员分享,可在线阅读,更多相关《外文翻译--制动系统.doc(15页珍藏版)》请在金锄头文库上搜索。

1、英文原文Brake systemsWe all know that pushing down on the brake pedal slows a car to a stop. But how does this happen? How does your car transmit the force from your leg to its wheels? How does it multiply the force so that it is enough to stop something as big as a car?When you depress your brake pedal

2、, your car transmits the force from your foot to its brakes through a fluid. Since the actual brakes require a much greater force than you could apply with your leg, your car must also multiply the force of your foot. It does this in two ways: Mechanical advantage (leverage) Hydraulic force multipli

3、cation The brakes transmit the force to the tires using friction, and the tires transmit that force to the road using friction also. Before we begin our discussion on the components of the brake system, well cover these three principles: Leverage Hydraulics Friction Leverage and HydraulicsIn the fig

4、ure below, a force F is being applied to the left end of the lever. The left end of the lever is twice as long (2X) as the right end (X). Therefore, on the right end of the lever a force of 2F is available, but it acts through half of the distance (Y) that the left end moves (2Y). Changing the relat

5、ive lengths of the left and right ends of the lever changes the multipliers. The basic idea behind any hydraulic system is very simple: Force applied at one point is transmitted to another point using an incompressible fluid, almost always an oil of some sort. Most brake systems also multiply the fo

6、rce in the process. Here you can see the simplest possible hydraulic system: Your browser does not support JavaScript or it is disabled. Simple hydraulic system In the figure above, two pistons (shown in red) are fit into two glass cylinders filled with oil (shown in light blue) and connected to one

7、 another with an oil-filled pipe. If you apply a downward force to one piston (the left one, in this drawing), then the force is transmitted to the second piston through the oil in the pipe. Since oil is incompressible, the efficiency is very good - almost all of the applied force appears at the sec

8、ond piston. The great thing about hydraulic systems is that the pipe connecting the two cylinders can be any length and shape, allowing it to snake through all sorts of things separating the two pistons. The pipe can also fork, so that one master cylinder can drive more than one slave cylinder if de

9、sired, as shown in here: Your browser does not support JavaScript or it is disabled. Master cylinder with two slaves The other neat thing about a hydraulic system is that it makes force multiplication (or division) fairly easy. If you have read How a Block and Tackle Works or How Gear Ratios Work, t

10、hen you know that trading force for distance is very common in mechanical systems. In a hydraulic system, all you have to do is change the size of one piston and cylinder relative to the other, as shown here: Your browser does not support JavaScript or it is disabled. Hydraulic multiplication To det

11、ermine the multiplication factor in the figure above, start by looking at the size of the pistons. Assume that the piston on the left is 2 inches (5.08 cm) in diameter (1-inch / 2.54 cm radius), while the piston on the right is 6 inches (15.24 cm) in diameter (3-inch / 7.62 cm radius). The area of t

12、he two pistons is Pi * r2. The area of the left piston is therefore 3.14, while the area of the piston on the right is 28.26. The piston on the right is nine times larger than the piston on the left. This means that any force applied to the left-hand piston will come out nine times greater on the ri

13、ght-hand piston. So, if you apply a 100-pound downward force to the left piston, a 900-pound upward force will appear on the right. The only catch is that you will have to depress the left piston 9 inches (22.86 cm) to raise the right piston 1 inch (2.54 cm).A Simple Brake SystemBefore we get into a

14、ll the parts of an actual car brake system, lets look at a simplified system:Your browser does not support JavaScript or it is disabled. A simple brake system You can see that the distance from the pedal to the pivot is four times the distance from the cylinder to the pivot, so the force at the peda

15、l will be increased by a factor of four before it is transmitted to the cylinder. You can also see that the diameter of the brake cylinder is three times the diameter of the pedal cylinder. This further multiplies the force by nine. All together, this system increases the force of your foot by a fac

16、tor of 36. If you put 10 pounds of force on the pedal, 360 pounds (162 kg) will be generated at the wheel squeezing the brake pads. There are a couple of problems with this simple system. What if we have a leak? If it is a slow leak, eventually there will not be enough fluid left to fill the brake cylinder, and the brakes will not function. If it is a major leak, then the first time you apply the brakes all of the fluid

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 文学/艺术/历史 > 传记/自述

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号