高浓度氨氮废水的处理技术研究综述.doc

上传人:鲁** 文档编号:544643738 上传时间:2022-09-18 格式:DOC 页数:5 大小:57.51KB
返回 下载 相关 举报
高浓度氨氮废水的处理技术研究综述.doc_第1页
第1页 / 共5页
高浓度氨氮废水的处理技术研究综述.doc_第2页
第2页 / 共5页
高浓度氨氮废水的处理技术研究综述.doc_第3页
第3页 / 共5页
高浓度氨氮废水的处理技术研究综述.doc_第4页
第4页 / 共5页
高浓度氨氮废水的处理技术研究综述.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《高浓度氨氮废水的处理技术研究综述.doc》由会员分享,可在线阅读,更多相关《高浓度氨氮废水的处理技术研究综述.doc(5页珍藏版)》请在金锄头文库上搜索。

1、高浓度氨氮废水的处理技术研究综述李淑媚(广东石油化工学院 环境工程系 环境07-1班,广东 茂名 525000)摘 要:综述了目前国内外高浓度氨氮废水处理方法中物化法、生化联合法和新型生物脱氮法的原理、应用以及研究进展情况,并指出了各种方法存在的问题。并指出新型高效的生物脱氮工艺以及简单实用的生化联合工艺是今后研究工作的重点。 关键字:高浓度氨氮废水 物化法 生化联合法 新型生物脱氮 进展 随着我国社会经济的高速发展,各种污染物的排放量急剧增加,对环境尤其是水体造成了严重污染,水资源的短缺已成为制约我国可持续性发展的重要因素,根据环境监测总站的报道,我国城市地表水的主要污染物食氨氮、酚等。 氨

2、氮废水的超标排放时水体富营养化的主要原因。另外,氨氮还会增大给水消毒和工业循环水杀菌处理的用氯量,对某些金属,特别是对铜具有腐蚀性,当污水回用时,再生水中氨氮可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和用水设备,并影响换热效率1。 氨氮废水已引起环保领域和全球范围的重视,近一、二十年来,国内外在氨氮废水处理方面开展了较多的研究,其研究范围几乎涉及物理、化学、生物法的各种处理工艺,新的 技术不断出现,在氨氮废水处理的工业应用方面展露出诱人的前景。1氨氮废水的来源氨是废水中的主要污染物之一,氮的存在形态主要有:NH4+N、NO2、NO3、有机氮,在石化废水中NH4+N是最常见的

3、污染物。水中的氮使水体富营养化,从而滋生细菌及藻类,对鱼类有毒害作用,对人类健康有危害作用2。无论在是日常生活还是在工业生产过程都存在大量的氨氮废水,目前国内外对废水排放或回用的氮指标的控制越来越重视,尤其欧洲对废水N、P指标要求比较严格,传统的老三套式(隔油、浮选、曝气)废水处理方法根本不能满足要求,许多国家都对污水脱氮技术进行开发研究以提高脱氮效率3。为了避免重复建设和使用不成熟的技术,分析当前的技术进展具有重要的现实意义。氨氮废水的来源主要有以下几个途径:a)生活污水中产生氨氮废水水中氨氮的来源主要为生活污水中如洗涤废水、含废弃食物产生的垃圾沥滤液及人体排泄物等含氮有机物受微生物作用的分

4、解产物;b)工业生产产生氨氮废水氮的工业污染来源于肥料生产、硝酸、炼焦、煤气、硝化纤维、人造丝、合成橡胶、碳化钙、染料、清漆、烧碱、电镀及石油开采和石油加工过程中。如国内某钨冶炼厂的萃取余液废水,主要成分有Na+、NH4+、SO42-、Cl-和石油类等,氨氮浓度在300700mg/L,废水呈酸性,pH值在1.5左右,水量近300m3/d;国内某钽铌冶炼厂,其氢氧化钽或氢氧化铌的沉淀母液废水中氨氮浓度高达4050g/L,氢氧化钽或氢氧化铌沉淀物的洗水中氨氮浓度也有几克每升;沉淀母液及洗水都呈弱碱性,pH值在9左右,主要成分有F、NH4+。钨、钽、铌冶炼废水中的氨氮都以氨根离子的形式存在,进入水体

5、后加剧了水体的富营养化4;c)农田排水产生氮氮废水农业生产中大量使用的化肥,因利用效率不高而造成的氨流失,加上动物的排泄和垃圾渗滤液氨氮的排放等随地表径流进入地面水。2氨氮废水处理技术研究与应用状况 目前,氨氮废水的处理技术可以分为两大类:一类是物化处理技术,包括吹脱(或汽提)、沉淀、膜吸收、湿式氧化等,其中吹脱和膜吸收技术都需要氨氮尽可能以氨分子形态存在;另一类技术是生物脱氮技术。21 物化处理技术 依据NH3的质量分数与pH的关系,见图1,如果氨氮的去除形态为氨气,为达到较高的去除率,就必须调节溶液的pH在11以上,这类技术包括吹脱、汽提、膜吸收等,在处理氨氮废水的过程中,需要消耗大量碱,

6、但可以回收部分氨。2.1.1 吹脱(汽提)法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。王文斌等5对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达20004000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。王有乐等6采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH11,超声吹脱时间为40 min,气水比

7、为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17164,在90以上,吹脱后氨氮在100 mg/L以内。为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。Izzet等在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95。而在pH12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85。据此认为,吹脱法脱氮

8、的主要机理应该是机械搅拌而不是空气扩散搅拌7。2.1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等8探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为3016目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。Milan等用沸石离子交换法处理经厌氧消化过的猪肥废水时发现Na-Zeo、Mg-Zeo、Ca-Zeo、k-Ze

9、o中Na-Zeo沸石效果最好,其次是Ca-Zeo。增加离子交换床的高度可以提高氨氮去除率,综合考虑经济原因和水力条件,床高18 cm(H/D=4),相对流量小于7.8BV/h是比较适合的尺寸。离子交换法受悬浮物浓度的影响较大。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。2.1.3 化学沉淀法 主要是利用以下化学反应:Mg2 +NH4+PO43-=MgNH4PO4理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当Mg2 + NH4+PO43 -2.51013时可生成磷酸铵镁(MAP),除去废水中的氨氮。穆大纲等9采用向氨氮浓度较高

10、的工业废水中投加MgCl26H2O和Na2HP0412H20生成磷酸铵镁沉淀的方法,以去除其中的高浓度氨氮。结果表明,在pH为8.9l,Mg2+,NH4,P043-的摩尔比为1.25:1:1,反应温度为25 ,反应时间为20 min,沉淀时间为20 min的条件下,氨氨质量浓度可由9500 mg/L降低到460 mg/L,去除率达到95以上。由于在多数废水中镁盐的含量相对于磷酸盐和氨氮会较低,尽管生成的磷酸铵镁可以做为农肥而抵消一部分成本,投加镁盐的费用仍成为限制这种方法推行的主要因素。海水取之不尽,并且其中含有大量的镁盐。Kumashiro等10以海水做为镁离子源试验研究了磷酸铵镁结晶过程。

11、盐卤是制盐副产品,主要含MgCl2和其他无机化合物。Mg2+约为32 g/L为海水的27倍。Lee等用MgCl2、海水、盐卤分别做为Mg2+源以磷酸铵镁结晶法处理养猪场废水,结果表明,pH是最重要的控制参数,当终点pH9.6时,反应在10 min内即可结束。由于废水中的N/P不平衡,与其他两种Mg2+源相比,盐卤的除磷效果相同而脱氮效果略差。2.2 生物脱氨技术 物化方法在处理高浓度氨氮废水时不会因为氨氮浓度过高而受到限制,但是不能将氨氮浓度降到足够低(如100 mg/L以下)。而生物脱氮会因为高浓度游离氨或者亚硝酸盐氮而受到抑制。实际应用中采用生化联合的方法,在生物处理前先对含高浓度氨氮的废

12、水进行物化处理。卢平等11研究采用吹脱-缺氧-好氧工艺处理含高浓度氨氮垃圾渗滤液。结果表明,吹脱条件控制在pH=9 5、吹脱时间为12 h时,吹脱预处理可去除废水中60%以上的氨氮,再经缺氧-好氧生物处理后对氨氮(由1400 mg/L降至19.4 mg/L)和COD的去除率90%。Horan等用生物活性炭流化床处理垃圾渗滤液(COD为8002700 mg/L,氨氮为220800 mg/L)。研究结果表明,在氨氮负荷0.71 kg/(m3d)时,硝化去除率可达90以上,COD去除率达70,BOD全部去除。Fikret等以石灰絮凝沉淀+空气吹脱做为预处理手段提高渗滤液的可生化性,在随后的好氧生化处

13、理池中加入吸附剂(粉末状活性炭和沸石),发现吸附剂在05 g/L时COD和氨氮的去除效率均随吸附剂浓度增加而提高。对于氨氮的去除效果沸石要优于活性炭。膜-生物反应器技术(MBR)是将膜分离技术与传统的废水生物反应器有机组合形成的一种新型高效的污水处理系统。MBR处理效率高,出水可直接回用,设备少战地面积小,剩余污泥量少。其难点在于保持膜有较大的通量和防止膜的渗漏。李红岩等12利用一体化膜生物反应器进行了高浓度氨氮废水硝化特性研究。研究结果表明,当原水氨氮浓度为2000 mg/L、进水氨氦的容积负荷为2.0 kg/(m3d)时,氨氮的去除率可达99以上,系统比较稳定。反应器内活性污泥的比硝化速率

14、在半年的时间内基本稳定在0.36/d左右。3. 高浓度氨氮废水处理的研究进展 近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化。3.1 短程硝化反硝化生物硝化反硝化是应用最广泛的脱氮方式。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化(将氨氮氧化至亚硝酸盐氮即进行反硝化),不仅可以节省氨氧化需氧量而且可以节省反硝化所需炭源。Ruiza等用合成废水(模拟含高浓度氨氮的工业废水)试验确定实现亚硝酸盐积累的最佳条件。要想实现亚硝酸盐积累,pH不是一个关键的控制参数,因为pH在6.458.

15、95时,全部硝化生成硝酸盐,在pH8.95时发生硝化受抑,氨氮积累。当DO0.7 mg/L时,可以实现65的氨氮以亚硝酸盐的形式积累并且氨氮转化率在98以上。DO1.7 mg/L时全部硝化生成硝酸盐。刘俊新等13对低碳氮比的高浓度氨氮废水采用亚硝玻型和硝酸型脱氮的效果进行了对比分析。试验结果表明,亚硝酸型脱氮可明显提高总氮去除效率,氨氮和硝态氮负荷可提高近1倍。此外,pH和氨氮浓度等因素对脱氮类型具有重要影响。刘超翔等14短程硝化反硝化处理焦化废水的中试结果表明,进水COD、氨氮、TN 和酚的浓度分别为1201.6、510.4、540.1、110.4 mg/L时,出水COD、氨氮、TN和酚的平均浓度分别为197.1、14.2、181.5、0.4 mg/L,相应的去除率分别为83.6%、97.2%、66.4%、99.6%。与常规生物脱氮工艺相比,该工艺氨氮负荷高,在较低的C/N值条件下可使TN去除率提高。3.2 厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。ANAMMOX的生化反应式为:NH4+NO2N2+2H2OANAMMOX菌是专性厌氧自养菌

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号