勾股定理应用二.doc

上传人:ni****g 文档编号:543873999 上传时间:2022-10-02 格式:DOC 页数:10 大小:328.94KB
返回 下载 相关 举报
勾股定理应用二.doc_第1页
第1页 / 共10页
勾股定理应用二.doc_第2页
第2页 / 共10页
勾股定理应用二.doc_第3页
第3页 / 共10页
勾股定理应用二.doc_第4页
第4页 / 共10页
勾股定理应用二.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《勾股定理应用二.doc》由会员分享,可在线阅读,更多相关《勾股定理应用二.doc(10页珍藏版)》请在金锄头文库上搜索。

1、 学情分析基础较好 ,对于知识不能灵活运用 课 题勾股定理专题二 学习目标与 考点分析学习目标:1、熟练运用勾股定理判定三角形为直角三角形 2、熟练在实际生活中活用勾股定理 3、利用勾股定理求解三角形的高考点分析:1、利用勾股定理进行三角形判定为直角三角形 2、勾股定理的实际运用学习重点重点:1、三角形勾股定理的实际运用 2、勾股定理在判断三角形是否为直角三角形学习方法讲练结合 练习巩固 学习内容与过程一、 本节内容导入AB1、如图,壁虎在一座底面半径为1米,高2米的油桶的下底边沿A处,发现油桶的另一侧中点处有一萤火虫,便决定捕捉它,如是边小心翼翼地向萤火虫爬去,若壁虎要在最短时间内获得一顿美

2、餐,问壁虎应至少爬行多少路程才能捕到萤火虫?取3.14,结果保留一位小数,参考数据3.32=10.86)二、 知识点梳理知识点及例题知识点一:勾股定理如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2b2c2即直角三角形中两直角边的平方和等于斜边的平方要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2, b2=c2-a2 ,c2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。 图

3、(1)中,所以。 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。 图(2)中,所以。方法三:将四个全等的直角三角形分别拼成如图(3)1和(3)2所示的两个形状相同的正方形。 在(3)1中,甲的面积=(大正方形面积)(4个直角三角形面积), 在(3)2中,乙和丙的面积和=(大正方形面积)(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。 ,所以。知识点三:勾股定理的作用1已知直角三角形的两条边长求第三边;2已知直角三角形的一条边,求另两边的关系;3用于证明平方关系的问题; 4利用勾股定理,作出长为的线段。2. 在理解

4、的基础上熟悉下列勾股数满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。 熟悉下列勾股数,对解题是会有帮助的:3、4、55、12、13;8、15、17;7、24、25;10、24、26;9、40、41如果(a,b,c)是勾股数,当t0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。经典例题透析 类型一:勾股定理的直接用法1、在RtABC中,C=90(1)已知a=6, c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨: 写解的过程中,一定要先写上在哪个

5、直角三角形中,注意勾股定理的变形使用。解析:(1) 在ABC中,C=90,a=6,c=10,b=(2) 在ABC中,C=90,a=40,b=9,c=(3) 在ABC中,C=90,c=25,b=15,a=总结升华:有一些题目的图形较复杂,但中心思想还是化为直角三角形来解决。如:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差或和。举一反三【变式】:如图B=ACD=90, AD=13,CD=12, BC=3,则AB的长是多少?【答案】ACD=90AD=13, CD=12AC2 =AD2CD2=132122=25AC=5又ABC=90且B

6、C=3由勾股定理可得AB2=AC2BC2 =5232 =16AB= 4AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,再由勾股定理计算出AD、DC的长,进而求出BC的长. 解析:作于D,则因,(的两个锐角互余)(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半). 根据勾股定理,在中,. 根据勾股定理,在中,. . 总结升华:利用勾股定理计算线段的长,是勾股定理的一个重要应用. 当题目中没有垂直条件时,也经常作垂线构造直角三角形以便应用勾股定理. 举一反三【变式1】如图,已知:,于P. 求证

7、:. 思路点拨: 图中已有两个直角三角形,但是还没有以BP为边的直角三角形. 因此,我们考虑构造一个以BP为一边的直角三角形. 所以连结BM. 这样,实际上就得到了4个直角三角形. 那么根据勾股定理,可证明这几条线段的平方之间的关系.解析:连结BM,根据勾股定理,在中,. 而在中,则根据勾股定理有. 又 (已知),. 在中,根据勾股定理有,. 【变式2】已知:如图,B=D=90,A=60,AB=4,CD=2。求:四边形ABCD的面积。分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种

8、较为简单。解析:延长AD、BC交于E。A=60,B=90,E=30。AE=2AB=8,CE=2CD=4,BE2=AE2-AB2=82-42=48,BE=。 DE2= CE2-CD2=42-22=12,DE=。S四边形ABCD=SABE-SCDE=ABBE-CDDE=经典类型题类型一:勾股定理及其逆定理的基本用法1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。思路点拨:在直角三角形中知道两边的比值和第三边的长度,求面积,可以先通过比值设未知数,再根据勾股定理列出方程,求出未知数的值进而求面积。解析:设此直角三角形两直角边分别是3x,4x,根据题意得: (3x)2+(4x

9、)2202 化简得x216; 直角三角形的面积3x4x6x296总结升华:直角三角形边的有关计算中,常常要设未知数,然后用勾股定理列方程(组)求解。举一反三【变式1】等边三角形的边长为2,求它的面积。【答案】如图,等边ABC,作ADBC于D则:BDBC(等腰三角形底边上的高与底边上的中线互相重合)ABACBC2(等边三角形各边都相等)BD1在直角三角形ABD中,AB2AD2+BD2,即:AD2AB2BD2413ADSABCBCAD注:等边三角形面积公式:若等边三角形边长为a,则其面积为a。【变式2】直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积。【答案】设此直角三角形两直角边长分

10、别是x,y,根据题意得:由(1)得:x+y7,(x+y)249,x2+2xy+y249 (3)(3)(2),得:xy12直角三角形的面积是xy126(cm2)【变式3】若直角三角形的三边长分别是n+1,n+2,n+3,求n。思路点拨:首先要确定斜边(最长的边)长n+3,然后利用勾股定理列方程求解。解:此直角三角形的斜边长为n+3,由勾股定理可得:(n+1)2+(n+2)2(n+3)2化简得:n24n2,但当n2时,n+110,n2总结升华:注意直角三角形中两“直角边”的平方和等于“斜边”的平方,在题目没有给出哪条是直角边哪条是斜边的情况下,首先要先确定斜边,直角边。【变式4】以下列各组数为边长

11、,能组成直角三角形的是( )A、8,15,17 B、4,5,6 C、5,8,10 D、8,39,40解析:此题可直接用勾股定理的逆定理来进行判断,对数据较大的可以用c2a2+b2的变形:b2c2a2(ca)(c+a)来判断。例如:对于选择D,82(40+39)(4039),以8,39,40为边长不能组成直角三角形。同理可以判断其它选项。【答案】:A【变式5】四边形ABCD中,B=90,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。解:连结ACB=90,AB=3,BC=4AC2=AB2+BC2=25(勾股定理)AC=5AC2+CD2=169,AD2=169AC2+CD2=A

12、D2ACD=90(勾股定理逆定理)S四边形ABCD=SABC+SACD=ABBC+ACCD=36类型二:勾股定理的应用2、如图,公路MN和公路PQ在点P处交汇,且QPN30,点A处有一所中学,AP160m。假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒? 思路点拨:(1)要判断拖拉机的噪音是否影响学校A,实质上是看A到公路的距离是否小于100m, 小于100m则受影响,大于100m则不受影响,故作垂线段AB并计算其长度。(2)要求出学校受影响的时间,实质是要求拖拉机对学校A的影响所行驶的路程。因此必须找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校。 解析:作ABMN,垂足为B

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号