静态时序分析.doc

上传人:大米 文档编号:543700088 上传时间:2024-02-06 格式:DOC 页数:8 大小:229.50KB
返回 下载 相关 举报
静态时序分析.doc_第1页
第1页 / 共8页
静态时序分析.doc_第2页
第2页 / 共8页
静态时序分析.doc_第3页
第3页 / 共8页
静态时序分析.doc_第4页
第4页 / 共8页
静态时序分析.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《静态时序分析.doc》由会员分享,可在线阅读,更多相关《静态时序分析.doc(8页珍藏版)》请在金锄头文库上搜索。

1、静态时序分析(Static Timing Analysis)基础与应用前言在制程进入深次微米世代之后,晶片(IC)设计的高复杂度及系统单晶片(SOC)设计方式兴起。此一趋势使得如何确保IC品质成为今日所有设计从业人员不得不面临之重大课题。静态时序分析(Static Timing Analysis简称STA)经由完整的分析方式判断IC是否能够在使用者的时序环境下正常工作,对确保IC品质之课题,提供一个不错的解决方案。然而,对于许多IC设计者而言,STA是个既熟悉却又陌生的名词。本文将力求以简单叙述及图例说明的方式,对STA的基础概念及其在IC设计流程中的应用做详尽的介绍。什么是STA? STA的

2、简单定义如下:套用特定的时序模型(Timing Model),针对特定电路分析其是否违反设计者给定的时序限制(Timing Constraint)。以分析的方式区分,可分为Path-Based及Block-Based两种。 先来看看Path-Based这种分析方式。如图一所示,讯号从A点及B点输入,经由4个逻辑闸组成的电路到达输出Y 点。套用的Timing Model标示在各逻辑闸上,对于所有输入端到输出端都可以找到相对应的延迟时间。而使用者给定的Timing Constraint为:1. 讯号A到达电路输入端的时间点为2(AT=2,AT为Arrival Time)。 2. 讯号B到达电路输入

3、端的时间点为5(AT=5)。 3. 讯号必须在时间点10之前到达输出端Y(RT=10,RT为Required Time)。 现在我们针对P1及P2两条路径(Path)来做分析。P1的起始点为A,讯号到达时间点为2。经过第1个逻辑闸之后,由于此闸有2单位的延迟时间,所以讯号到达此闸输出的时间点为4(2+2)。依此类推,讯号经由P1到达输出Y的时间点为7(2+2+3)。在和上述第三项Timing Constraint比对之后,我们可以得知对P1这个路径而言,时序(Timing)是满足使用者要求的。 按照同样的方式可以得到讯号经由路径B到达输出Y的时间点为11(5+1+3+2),照样和上述第三项Ti

4、ming Constraint比对,我们可以得知对P2这个路径而言,Timing是不满足使用者要求的。 对图一的设计而言,总共有6个讯号路径。对于采用Path-Based分析方式的STA软体来说,它会对这6个讯号路径作逐一的分析,然后记录下结果。IC设计者藉由检视其分析报告的方式来判断所设计的电路是否符合给定的Timing Constraint。由于最常用来做静态时序分析验证核可(STA Signoff)的EDA软体PrimeTime?采用Path-Based的分析方式,所以本文将以Path-Based的分析方式介绍为主。 再来看看Block-Based的分析方式。此时时序资讯(Timing

5、Information)的储存不再是以路径为单位,而是以电路节点(Node)为单位。由Timing Constraint我们仅能得知A节点的AT为2,B节点的AT为5以及Y节点的RT为10。Block-Based的分析方式会找出每个节点的AT和 RT,然后比对这两个数值。当RT的值大于AT时表示讯号比Timing Constrain中要求的时间还早到达,如此则Timing是满足的,反之则不满足。STA资料准备在做STA之前,我们必须对其准备工作有充分的了解。STA所需的资料如图三所示,以下我们分项说明。其中Design Data部分,由于Block Model和STA软体相关性太高,我们不在此

6、加以说明,请直接参阅您STA软体的使用手册。图 三Library Data:STA所需要的Timing Model就存放在标准元件库(Cell Library)中。这些必要的时序资讯是以Timing Arc的方式呈现在标准元件库中。Timing Arc定义逻辑闸任两个端点之间的时序关系,其种类有Combinational Timing Arc、Setup Timing Arc、Hold Timing Arc、Edge Timing Arc、Preset and Clear Timing Arc、Recovery Timing Arc、Removal Timing Arc、Three State

7、 Enable & Disable Timing Arc、Width Timing Arc。其中第1、4、5、8项定义时序延迟,其他各项则是定义时序检查。图 四Combinational Timing Arc是最基本的Timing Arc。Timing Arc如果不特别宣告的话,就是属于此类。如图四所示,他定义了从特定输入到特定输出(A到Z)的延迟时间。Combinational Timing Arc的Sense有三种,分别是inverting(或 negative unate),non-inverting(或 positive unate)以及non-unate。当Timing Arc相关之

8、特定输出(图四Z)讯号变化方向和特定输入(图四A)讯号变化方向相反(如输入由0变1,输出由1变0),则此Timing Arc为inverting sense。反之,输出输入讯号变化方向一致的话,则此Timing Arc为non-inverting sense。当特定输出无法由特定输入单独决定时,此Timing Arc为non-unate。图 五图 六图 七图 八图 九图 十图 十一图 十二其他的Timing Arc说明如下。 Setup Timing Arc:定义序向元件(Sequential Cell,如Flip-Flop、Latch等)所需的Setup Time,依据Clock上升或下降分

9、为2类(图五)。 Hold Timing Arc:定义序向元件所需的Hold Time,依据Clock上升或下降分为2类(图六)。 Edge Timing Arc:定义序向元件Clock Active Edge到资料输出的延迟时间,依据Clock上升或下降分为2类(图七)。 Preset and Clear Timing Arc:定义序向元件清除讯号(Preset或Clear)发生后,资料被清除的速度,依据清除讯号上升或下降及是Preset或Clear分为4类(图八)。这个Timing Arc通常会被取消掉,因为它会造成讯号路径产生回路,这对STA而言是不允许的。 Recovery Timin

10、g Arc:定义序向元件Clock Active Edge之前,清除讯号不准启动的时间,依据Clock上升或下降分为2类(图九)。 Removal Timing Arc:定义序向元件Clock Active Edge之后,清除讯号不准启动的时间,依据Clock上升或下降分为2类(图十)。 Three State Enable & Disable Timing Arc:定义Tri-State元件致能讯号(Enable)到输出的延迟时间,依据Enable或Disable分为2类。(图十一) Width Timing Arc:定义讯号需维持稳定的最短时间,依据讯号维持在0或1的位准分为2类。(图十二

11、) 上文列出了标准元件库内时序模型的项目,但对其量化的数据却没有加以说明。接下来,我们就来看看到底这些时序资讯的确实数值是如何定义在标准元件库中的。 以Combinational Timing Arc为例,讯号从输入到输出的延迟时间可以描述成以输入的转换时间(Transition Time)和输出的负载为变数的函数。描述的方式可以是线性的方式,如图十三所示。也可以将这2个变数当成指标,建立时序表格(Timing Table),让STA软体可以查询出正确的延迟时间。这种以表格描述的方式会比上述线性描述的方式准确许多,因此现今市面上大部分的标准元件库皆采用产生时序表格的方式来建立Timing Mo

12、del。图 十三我们举个简单的例子来说明STA软体如何从时序表格计算出元件延迟时间。(图十四)图十四 元件延迟时间(Ddelay):输入达逻辑1位准50%到输出达逻辑1位准50%的时间。 元件转换时间(Dtransition):输出达逻辑1位准20%(80%)到80%(20%)的时间。 当输入的转换时间为0.5,输出负载为0.2时,可由图十四的时序表格查得元件I2的延迟时间为0.432。而由于表格的大小有限,对于无法直接由表格查询到的延迟时间(如输入转换时间0.25,输出负载0.15),STA软体会利用线性内插或外插的方式计算延迟时间。对于其他的Timing Arc,不管是时序延迟或时序检查,

13、其相对应的时序数值计算和上例的计算方式是一样的。接下来我们说明操作环境(Operating Condition)对时序的影响。操作环境指的是制程(Process)、电压(Voltage)、温度(Temperature)三项因子。这三项因子通常会被简称为PVT,其对时序的影响可用下方线性方程式来描述。其中nom_process、nom_voltage及 nom_temperature会定义在标准元件库中,代表建立时序表格时的操作环境。Interconnect Data: 在什么是STA段落的例子中,为了方便说明,我们并没有把逻辑闸和逻辑闸间的连线延迟(Interconnect Delay)考虑在

14、内。事实上,许多DSM IC设计之时序表现是由连线延迟主导的,其重要性不容我们忽视。 连线延迟依照布局与绕线(P&R)前后有不同的考量。在布局与绕线前,元件在晶片中摆放的位置尚未确定,所以连线延迟是一个预估值。而在布局与绕线之后,连线延迟则是根据实际绕线计算出来的。对布局与绕线之前的连线延迟,通常是用Wireload Model来预估。Wireload Model根据晶片面积的预估大小及连线驱动元件数目(Fan-out)的多寡来决定连线的电阻和电容值,STA软体则利用这些电阻电容值计算出连线延迟。在布局与绕线之后,可以利用电阻电容萃取(RC Extraction)软体将绕线图形转换成实际的电阻

15、电容电路,然后贴回(Back-annotate)STA软体计算连线延迟。Timing Constraints: Timing Constraint为使用者所给定,用来检验设计电路时序的准则。其中最重要的一项就是时脉(Clock)的描述。对于一个同步电路而言,暂存器和暂存器之间的路径延迟时间必须小于一个Clock周期(Period),也就是说,当我们确认了Clock规格,所有暂存器间的路径的Timing Constraint就会自动给定了。STA流程及分析方式STA的流程如图二十所示,而其分析验证的项目就是我们前文提及之时序检查相关的Timing Arc,如Setup Time、Hold Time等等。以下我们针对Setup Time举1实际范例来说明STA的分析方式。图二十 Setup Time设计电路如图二十一所示,时序模型(Timing Model)及时序限制(Timing Constraint)如下:图二十一 所有逻辑闸在输出讯号上升时最长的延迟时间为3ns,最短为2ns。 所有逻辑闸在输出讯号上升时最长的

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号