焊接种类及原理.doc

上传人:cl****1 文档编号:543453274 上传时间:2023-06-11 格式:DOC 页数:6 大小:46.51KB
返回 下载 相关 举报
焊接种类及原理.doc_第1页
第1页 / 共6页
焊接种类及原理.doc_第2页
第2页 / 共6页
焊接种类及原理.doc_第3页
第3页 / 共6页
焊接种类及原理.doc_第4页
第4页 / 共6页
焊接种类及原理.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《焊接种类及原理.doc》由会员分享,可在线阅读,更多相关《焊接种类及原理.doc(6页珍藏版)》请在金锄头文库上搜索。

1、碰焊,也就是接触焊。电阻焊(接触焊):利用强大的电流通过焊接结合处,因为电阻热能导致高热,根据焦耳-楞次定律Q=0.24I2Rt,可把接头处加热到熔化或半熔化状态,同时施以一定的压力,使其结合成为整体,无需外加填充金属和焊剂。按照接头的形式,有点焊(焊接部位为有一定直径的点)、缝焊(俗称滚焊,焊接部位为线状)和截面相差不大时的对接焊(俗称碰焊)。点焊和缝焊多用于薄板件(薄壳工件),碰焊多用于棒类工件(例如刃具、建筑钢筋等金属焊接工艺的基础知识1 金属焊接的方法将两块分离的金属其欲结合部位局部加热到熔化或半熔化状态,采取施加压力或不加压、或填充其他金属、利用原子间的扩散与结合等方法,使它们联结成

2、为整体,这个过程称为焊接。 常见的焊接方法有:(1) 电弧焊:这是最常用的金属焊接方法。它是用填充金属(焊条)作为一个电极,而被焊接金属作为另一个电极,在两个电极之间通过放电造成电弧,利用电弧产生的热量使连接处的金属局部熔化,并填充同时熔化的焊条金属,凝固后形成永久性接头(焊缝),从而完成焊接过程。电弧焊可分为手工电弧焊、半自动(电弧)焊、自动(电弧)焊。自动(电弧)焊通常是指埋弧自动焊-在焊接部位覆有起保护作用的焊剂层,由填充金属制成的光焊丝插入焊剂层,与焊接金属产生电弧,电弧埋藏在焊剂层下,电弧产生的热量熔化焊丝、焊剂和母材金属形成焊缝,其焊接过程是自动化进行的。最普遍使用的是手工电弧焊。

3、 电弧焊示意图手工电弧焊的基本工艺如下: a. 在焊接前清理焊接表面,以免影响电弧引燃和焊缝的质量。 b. 准备好接头形式(坡口型式)。 坡口的作用是使焊条、焊丝或焊炬(气焊时喷射乙炔-氧气火焰的喷嘴)能直接伸入坡口底部以保证焊透,并有利于脱渣和便于焊条在坡口内作必要的摆动,以获得良好的熔合。坡口的形状和尺寸主要取决于被焊材料及其规格(主要是厚度)以及采取的焊接方法、焊缝形式等。 在实际应用中常见的坡口型式有: 弯边接头-适用于厚度3mm的薄件; 平坡口-适用于38mm的较薄件; V型坡口-适用于厚度620mm的工件(单面焊接);焊缝坡口型式示意图X型坡口-适用于厚度1240mm的工件,并有对

4、称型与不对称型X坡口之分(双面焊接); U型坡口-适用于厚度2050mm的工件(单面焊接); 双U型坡口-适用于厚度3080mm的工件(双面焊接)。 坡口角度通常取6070,采用钝边(也叫做根高)的目的是防止焊件烧穿,而间隙则是为了便于焊透。 电弧焊的焊接规范中最主要的参数有: 焊条种类(取决于母材的材料)、焊条直径(取决于焊件厚度、焊缝位置、焊接层数、焊接速度、焊接电流等)、焊接电流、焊接层数、焊接速度等。 除了上述的普通电弧焊外,为了进一步提高焊接质量,还采用: 气体保护电弧焊:例如利用氩气作为焊接区域保护气体的氩弧焊、利用二氧化碳作为焊接区域保护气体的二氧化碳保护焊等,其基本原理是在以电

5、弧为热源进行焊接时,同时从喷枪的喷嘴中连续喷出保护气体把空气与焊接区域中的熔化金属隔离开来,以保护电弧和焊接熔池中的液态金属不受大气中的氧、氮、氢等污染,以达到提高焊接质量的目的。 钨极氩弧焊:以高熔点的金属钨棒作为焊接时产生电弧的一个电极,并处在氩气保护下的电弧焊,常用于不锈钢、高温合金等要求严格的焊接。 等离子电弧焊:这是由钨极氩弧焊发展起来的一种焊接方法,在喷嘴孔道的机械压缩作用下,加上冷气流的热收缩作用以及电磁收缩作用,使得通入喷嘴的保护气体和离子气体(例如纯氩、氩-氢混合气、纯氮等)从喷嘴喷出形成等离子气流速度较快的等电子弧,焊接时电弧能量密度高,焊接质量优良。焊缝的主要形式示意图(

6、2)电渣焊:利用电流通过熔化状态的熔渣时产生的电阻热来熔化插入熔渣的焊丝(填充金属)与母材形成熔池进行焊接,其原理与电渣重熔冶炼相似,适用于焊接厚度较大(例如50800mm)的工件(3)电阻焊(接触焊):利用强大的电流通过焊接结合处,因为电阻热能导致高热,根据焦耳-楞次定律Q=0.24I2Rt,可把接头处加热到熔化或半熔化状态,同时施以一定的压力,使其结合成为整体,无需外加填充金属和焊剂。按照接头的形式,有点焊(焊接部位为有一定直径的点)、缝焊(俗称滚焊,焊接部位为线状)和截面相差不大时的对接焊(俗称碰焊)。点焊和缝焊多用于薄板件(薄壳工件),碰焊多用于棒类工件(例如刃具、建筑钢筋等)。(4)

7、气焊:利用可燃气体燃烧,例如氧气-乙炔(C2H2,又称电石气),其火焰产生的热能使焊接部位和填充金属(焊丝)熔化而联结成整体。(5)钎焊:利用熔化的填充金属(钎料)把加热的固体金属联结在一起。热源可以是如同气焊中的气体火焰,也可以是烙铁(电烙铁、火烙铁)。钎焊过程中的焊接金属本身不发生熔化(仅仅加热到一定温度),其结合是依靠被焊金属与钎料之间的原子互相扩散达到坚固的结合。视钎料的软硬不同,可分为软钎焊(例如利用低熔点锡合金作钎料的锡焊)和硬钎焊(例如用铜作钎料的铜焊,常见于机械加工用刀具中硬质合金刀头与中碳结构钢刀柄的焊接)(6)摩擦焊:依靠焊接金属在焊接处相对高速摩擦产生高热至半熔化状态,再

8、施以一定压力实现结合。焊接的方法很多,除了上述常见的几种外,还有电子束焊接、激光束焊接、爆炸压力焊接等,以及常用于塑料的超声波焊接等等碰 焊碰焊:工作件相对夹头上,接合两端相互抵紧,以大量的电流经夹头导至工作件上,通过接触面产生高温,金属到达可塑状态时再在移动端施以适当压力紧压使两端挤压接合。 主要用途: 用以焊接棒、管子、型钢等。能焊接直径达16MM金属及200平方毫米切面金属,适用于各五金制品行业使用,如自行车、风扇、厨具器皿等制品。 技术参数: 机型 输入 功率 输出电流 加压压力 焊接能力 WL-B-16K 380V/1 16KVA 4500uF 10000A 24MM WL-B-25

9、K 380V/1 25KVA 13500uF 12000A 36MM WL-B-35K 380V/1 35KVA 27000uF 16000A 38MM WL-B-60K 380V/1 60KVA 40500uF 27000A 512MM 这个是碰焊机 点焊机原理 焊件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的方法称为电阻焊。电阻焊具有生产效率高、低成本、节省材料、易于自动化等特点,因此广泛应用于航空、航天、能源、电子、汽车、轻工等各工业部门,是重要的焊接工艺之一。 一、焊接热的产出及影响因素 点焊时产生的热量由下式决定:Q=IIRt(J)(1) 式中:Q

10、产生的热量(J)、I焊接电流(A)、R电极间电阻(欧姆)、t焊接时间(s) 1.电阻R及影响R的因素 电极间电阻包括工件本身电阻Rw,两工件间接触电阻Rc,电极与工件间接触电阻Rew.即R=2Rw+Rc+2Rew(2)如图. 当工件和电极一定时,工件的电阻取决与它的电阻率.因此,电阻率是被焊材料的重要性能.电阻率高的金属其导电性差(如不锈钢)电阻率低的金属其导电性好(如铝合金)。因此,点焊不锈钢时产热易而散热难,点焊铝合金时产热难而散热易.点焊时,前者可用较小电流(几千安培),而后者就必须用很大电流(几万安培)。电阻率不仅取决与金属种类,还与金属的热处理状态、加工方式及温度有关。 接触电阻存在

11、的时间是短暂,一般存在于焊接初期,由两方面原因形成: 1)工件和电极表面有高电阻系数的氧化物或脏物质层,会使电流遭到较大阻碍。过厚的氧化物和脏物质层甚至会使电流不能导通。 2)在表面十分洁净的条件下,由于表面的微观不平度,使工件只能在粗糙表面的局部形成接触点。在接触点处形成电流线的收拢。由于电流通路的缩小而增加了接触处的电阻。 电极与工件间的电阻Rew与Rc和Rw相比,由于铜合金的电阻率和硬度一般比工件低,因此很小,对熔核形成的影响更小,我们较少考虑它的影响。 2.焊接电流的影响 从公式(1)可见,电流对产热的影响比电阻和时间两者都大。因此,在焊接过程中,它是一个必须严格控制的参数。引起电流变

12、化的主要原因是电网电压波动和交流焊机次级回路阻抗变化。阻抗变化是因为回路的几何形状变化或因在次级回路中引入不同量的磁性金属。对于直流焊机,次级回路阻抗变化,对电流无明显影响。 3.焊接时间的影响 为了保证熔核尺寸和焊点强度,焊接时间与焊接电流在一定范围内可以相互补充。为了获得一定强度的焊点,可以采用大电流和短时间(强条件,又称硬规范),也可采用小电流和长时间(弱条件,也称软规范)。选用硬规范还是软规范,取决于金属的性能、厚度和所用焊机的功率。对于不同性能和厚度的金属所需的电流和时间,都有一个上下限,使用时以此为准。 4.电极压力的影响 电极压力对两电极间总电阻R有明显的影响,随着电极压力的增大

13、,R显著减小,而焊接电流增大的幅度却不大,不能 影响因R减小引起的产热减少。因此,焊点强度总随着焊接压力增大而减小。解决的办法是在增大焊接压力的同时,增大焊接电流。 5.电极形状及材料性能的影响 由于电极的接触面积决定着电流密度,电极材料的电阻率和导热性关系着热量的产生和散失,因此,电极的形状和材料对熔核的形成有显著影响。随着电极端头的变形和磨损,接触面积增大,焊点强度将降低。 6.工件表面状况的影响 工件表面的氧化物、污垢、油和其他杂质增大了接触电阻。过厚的氧化物层甚至会使电流不能通过。局部的导通,由于电流密度过大,则会产生飞溅和表面烧损。氧化物层的存在还会影响各个焊点加热的不均匀性,引起焊

14、接质量波动。因此彻底清理工件表面是保证获得优质接头的必要条件。 二、热平衡及散热 点焊时,产生的热量只有一小部分用于形成焊点,较大部分因向临近物质传导或辐射而损失掉了,其热平衡方程式: Q=Q1+Q2(3)其中:Q1形成熔核的热量、Q2损失的热量 有效热量Q1取决与金属的热物理性能及熔化金属量,而与所用的焊接条件无关。Q1=10%-30%Q,导热性好的金属(铝、铜合金等)取下限;电阻率高、导热性差的金属(不锈钢、高温合金等)取上限。损失热量Q2主要包括通过电极传导的热量(30%-50%Q)和通过工件传导的热量(20%Q左右)。辐射到大气中的热量5%左右。 三、焊接循环 点焊和凸焊的焊接循环由四

15、个基本阶段(如图点焊过程): 1)预压阶段电极下降到电流接通阶段,确保电极压紧工件,使工件间有适当压力。 2)焊接时间焊接电流通过工件,产热形成熔核。 3)维持时间切断焊接电流,电极压力继续维持至熔核凝固到足够强度。 4)休止时间电极开始提起到电极再次开始下降,开始下一个焊接循环。 为了改善焊接接头的性能,有时需要将下列各项中的一个或多个加于基本循环: 1)加大预压力以消除厚工件之间的间隙,使之紧密贴合。 2)用预热脉冲提高金属的塑性,使工件易于紧密贴合、防止飞溅;凸焊时这样做可以使多个凸点在通电焊接前与平板均匀接触,以保证各点加热的一致。 3)加大锻压力以压实熔核,防止产生裂纹或缩孔。 4)用回火或缓冷脉冲消除合金钢的淬火组织,提高接头的力学性能,或在不加大锻压力的条件下,防止裂纹和缩孔。 四、焊接电流的种类和适用范围 1.交流电 可以通过调幅使电流缓升、缓降,以达到预热和缓冷的目的,这对于铝合金焊接十分有利。交流电还可以用于多脉冲点焊,即用于两个或多个脉冲之间留有冷却时间,以控制加热速度。这种方法主要应用于厚钢板的焊接。 2.直流电 主要用于需要大电流的场合,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号