超声波流量计原理.doc

上传人:cn****1 文档编号:543338459 上传时间:2023-11-18 格式:DOC 页数:15 大小:282KB
返回 下载 相关 举报
超声波流量计原理.doc_第1页
第1页 / 共15页
超声波流量计原理.doc_第2页
第2页 / 共15页
超声波流量计原理.doc_第3页
第3页 / 共15页
超声波流量计原理.doc_第4页
第4页 / 共15页
超声波流量计原理.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《超声波流量计原理.doc》由会员分享,可在线阅读,更多相关《超声波流量计原理.doc(15页珍藏版)》请在金锄头文库上搜索。

1、超声流量计1 前言超声流量计(以下简称USF)是通过检测流体流动时对超声束(或超声脉冲)的作用,以测量体积流量的仪表。本文主要讨论用于测量封闭管道液体流量的USF。20世纪70年代随着电子技术的发展,性能日益完善的各种型号USF投入市场。有人预言由于USF测量原理是长度与时间两个基本量的结合,其导出量溯源性较好,有可能据此建立流量基准。2 工作原理封闭管道用USF按测量原理分类有:传播时间法;多普勒效应法;波束偏移法;相关法;噪声法。本文将讨论用得最多的传播时间法和多普勒效应法的仪表。2.1 传播时间法声波在流体中传播,顺流方向声波传播速度会增大,逆流方向则减小,同一传播距离就有不同的传播时间

2、。利用传播速度之差与被测流体流速之关系求取流速,称之传播时间法。按测量具体参数不同,分为时差法、相位差法和频差法。现以时差法阐明工作原理。(1)流速方程式如图1所示,超声波逆流从换能器1送到换能器2的传播速度c被流体流速Vm所减慢,为: (1)反之,超声波顺流从换能器2传送到换能器1的传播速度则被流体流速加快,为: (2)式(1)减式(2),并变换之,得 (3)式中L超声波在换能器之间传播路径的长度,m;X传播路径的轴向分量,m;t12、t21从换能器1到换能器2和从换能器2到换能器1的传播时间,s;c超声波在静止流体中的传播速度,m/s;流体通过换能器1、2之间声道上平均流速,m/s。时(间

3、)差法与频(率)差法和相差法间原理方程式的基本关系为 (4) (5)式中频率差;相位差;超声波在流体中的顺流和逆流的传播频率;超声波的频率。从中可以看出,相位差法本质上和时差法是相同的,而频率与时间有时互为倒数关系,三种方法没有本质上的差别。目前相位差法已不采用,频差法的仪表也不多。(2)流量方程式传播时间法所测量和计算的流速是声道上的线平均流速,而计算流量所需是流通横截面的面平均流速,二者的数值是不同的,其差异取决于流速分布状况。因此,必须用一定的方法对流速分布进行补偿。此外,对于夹装式换能器仪表,还必须对折射角受温度变化进行补偿,才能精确的测得流量。体积流量为 (6)式中K流速分布修正系数

4、,即声道上线平均流速和面平均流速和平面平均流速v之比,K=vm/v;DN管道内径。K是单声道通过管道中心(即管轴对称流场的最大流速处)的流速(分布)修正系数。管道雷诺数ReD变化K值将变化,仪表范围度为10时,K值变化约为1;范围度为100时,K值约变化2。流动从层流转变为紊流时,K值要变化约30。所以要精确测量时,必须对K值进行动态补偿。1)夹装式换能器仪表声道角的修正夹装式换能器USF除了做流速分布修正外,必要时还要做声道角变化影响的修正。根据斯那尔(Snall)定律式(7)和图2,声道角随流体中声速c的变化而变化,而c又是流体温度的函数(以水为例,见图3),因此,必须对角进行自动跟踪补偿

5、,以达到温度补偿的目的。 (7)式中超声在声楔中的入射角;、超声在管壁、流体中的折射角;、声楔、管壁、被测流体的声速。角不但受流体声速影响,还与声楔和管壁材料中的声速有关。然而因为一般固体材料的声速变化比液体声速温度变化小一个数量级,在温度变化不大的条件下对测量精确度的影响可以忽略不计。但是在温度变化范围大的情况下(例如高低温换能器工作温度范围-40-200)就必须对声楔和管壁中声速的大幅度变化进行修正。2)多声道直射式换能器仪表的流量方程式直射式换能器仪表的流量方程没有管壁材料折射温度变化影响。多声道仪表常用高斯积分法或其他积分法计算流量。图4是以四声道为例的原理模型,流量计算式(8)所示。

6、 (8)式中 DN测量段内与声道垂直方向上的圆管平均内径或矩形管道的平均内高;S高斯修正系数;Wi各声道高斯积分加权数;Li各声道长度;Vi各声道线平均流速;i各声道声道角;N声道数。2.2 多普勒(效应)法多普勒(效应)法USF是利用在静止(固定)点检测从移动源发射声波多产生多普勒频移现象。(1)流速方程式如图5所示,超声换能器A向流体发出频率为fA的连续超声波,经照射域内液体中散射体悬浮颗粒或气泡散射,散射的超声波产生多普勒频移fd,接收换能器B收到频率为fB的超声波,其值为 (9)式中 v散射体运动速度。多普勒频移fd正比于散射体流动速度 (10)测量对象确定后,式(10)右边除v外均为

7、常量,移行后得 (11)(2)流量方程式多普勒法USF的流量方程式形式上与式(6)相同,只是所测得的流速是各散射体的速度v(代替式中的vm),与载体液体管道平均流速数值并不一致;方程式中流速分布修正系数Kd以代替K0 Kd是散射体的“照射域”在管中心附近的系数;其值不适用于在大管径或含较多散射体达不到管中心附近就获得散射波的系数。(3)液体温度影响的修正式(11)中又流体声速c,而c是温度的函数,液体温度变化会引起测量误差。由于固体的声速温度变化影响比液体小一个数量级,即在式(11)中的流体声速c用声楔的声速c0取代,以减小用液体声速时的影响。因为从图6可知cos=sin,再按斯纳尔定律sin

8、/csin0/c0,式(11)便可得式(12),其中c0/sin0可视为常量。 (12)(4)散射体的影响实际上多普勒频移信号来自速度参差不一的散射体,而所测得各散射体速度和载体液体平均流速间的关系也有差别。其他参量如散射体粒度大小组合与流动时分布状况,散射体流速非轴向分量,声波被散射体衰减程度等均影响频移信号。3 优缺点和局限性 3.1 优点USF可作非接触测量。夹装式换能器USF可无需停流截管安装,只要在既设管道外部安装换能器即可。这是USF在工业用流量仪表中具有的独特优点,因此可作移动性(即非定点固定安装)测量,适用于管网流动状况评估测定USF为无流动阻挠测量,无额外压力损失。流量计的仪

9、表系数是可从实际测量管道及声道等几何尺寸计算求得的,既可采用干法标定,除带测量管段式外一般不需作实流校验。USF适用于大型圆形管道和矩形管道,且原理上不受管径限制,其造价基本上与管径无关。对于大型管道不仅带来方便,可认为在无法实现实流校验的情况下是优先考虑的选择方案。多普勒USF可测量固相含量较多或含有气泡的液体。USF可测量非导电性液体,在无阻挠流量测量方面是对电磁流量计的一种补充。因易于实行与测试方法(如流速计的速度-面积法,示踪法等)相结合,可解决一些特殊测量问题,如速度分布严重畸变测量,非圆截面管道测量等。某些传播时间法USF附有测量声波传播时间的功能,即可测量液体声速以判断所测液体类

10、别。例如,油船泵送油品上岸,可核查所测量的是油品还是仓底水。3.2 缺点和局限性传播时间法USF只能用于清洁液体和气体,不能测量悬浮颗粒和气泡超过某一范围的液体;反之多普勒法USF只能用于测量含有一定异相的液体。外夹装换能器的USF不能用于衬里或结垢太厚的管道,以及不能用于衬里(或锈层)与内管壁剥离(若夹层夹有气体会严重衰减超声信号)或锈蚀严重(改变超声传播路径)的管道。多普勒法USF多数情况下测量精度不高。国内生产现有品种不能用于管径小于DN25mm的管道。4 分类和结构 4.1 组成USF主要由安装在测量管道上的超声换能器(或由换能器和测量管组成的超声流量传感器)和转换器组成。转换器在结构

11、上分为固定盘装式和便携式两大类。换能器和转换器之间由专用信号传输电缆连接,在固定测量的场合需在适当的地方装接线盒。夹装式换能器通常还需配用安装夹具和耦合剂。图7是系统组成示例,此例是测量液体用传播时间法单声道Z法夹装式USF.4.2 分类可以从不同角度对超声流量测量方法和换能器(或传感器)进行分类。(1)按测量原理分类封闭管道用USF按测量原理有5种,如2节所述,现在用得最多的是传播时间法和多普勒法两大类。(2)按被测介质分类有气体用和液体用两类。传播时间法USF两种介质各自专用,因换能器工作频率各异,通常气体在100300kHz之间,液体在15MHz之间。气体仪表不能用夹装式换能器,因固体和

12、气体边界间超声波传播效率较低。(3)传播时间法按声道数分类按声道数分类常用的有单声道、双声道、四声道和八声道四种。近年有出现三声道、五声道和六声道。四声道及以上的多声道配置对提高测量精度起很大作用。各声道按换能器分布位置(见图8),又可分为以下几种。1)单声道 有Z法(透过法)和V法(反射法)两种。2)双声道 有X法(2Z法、交差法)、2V法和平行法三种。3)四声道 有4Z法和平行法两种。4) 八声道 有平行法和两平行四声道交差法二种。(4)按换能器安装方式分类有、1) 可移动安装2) 固定安装5 选用考虑要点5.1 测量原理的选择选择液体用USF首先考虑测量原理是传播时间法还是多普勒法?其主

13、要判断要素是:液体洁净程度或杂质含量,测量精度要求。基本适用条件如表1所示。条件传播时间法多普勒法适用液体水类(江河水,海水农业用水等),油类(纯净燃油,润滑油,食用油等),化学试剂,药液等含杂质多的水(下水,污水,农业用水等),浆类(泥浆,矿浆,纸浆化工料浆等),油类(非净燃油,重油,原油等)适用悬浮颗粒含量体积含量50100mg/L仪表基本误差带测量管段式(0.5-1)%R(3-10)%FS固体粒子含量基本不变时(0.5-3)%湿式大口径多声道湿式小口径单声道1.5%R-3%R夹装式(范围度20:1)重复性误差0.1%-0.3%1%信号传输电缆长度100-300m,在能保证信号质量的前提下

14、,可以小于100m30m价格较高一般较低此外,对于外夹装式仪表还要考虑管壁材料和厚度、锈蚀状况、衬里材料和厚度;对于现场安装换能器式仪表要考虑换能器类型;对于大管径传播时间法仪表要考虑声道数,等等。下文将分节讨论。5.2 适用悬浮颗粒含量的范围多普勒法USF要比传播时间法适用悬浮颗粒含量上限高得多,而且可以测量连续混入气泡的液体。但是根据测量原理,被测介质中必须含有一定数量的散射体,否则仪表就不能正常工作。传播时间法USF可以测量悬浮颗粒很少的液体,但不能测量含有影响超声波传播的连续混入气泡或体积较大固体物的液体。在这种情况下应用,应在换能器的上游进行消气、沉淀或过滤。在悬浮颗粒含量过多或因管道条件致使超声信号严重衰减而不能测量时,有时可以试降低换能器频率,予以解决。5.3 测量精确度(1)传播时间法传播时间法比多普勒法有较高的测量精确度,液体基本误差为0.5R至5FS,重复性为0.1R-0.3R;气体基本误差为0.5R到3FS,重复性为0.2R-0.4FS,高精度仪表均为多声道仪表。中小口径

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号