用混沌理论解释湍流现象.doc

上传人:枫** 文档编号:543195435 上传时间:2023-07-14 格式:DOC 页数:9 大小:73KB
返回 下载 相关 举报
用混沌理论解释湍流现象.doc_第1页
第1页 / 共9页
用混沌理论解释湍流现象.doc_第2页
第2页 / 共9页
用混沌理论解释湍流现象.doc_第3页
第3页 / 共9页
用混沌理论解释湍流现象.doc_第4页
第4页 / 共9页
用混沌理论解释湍流现象.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《用混沌理论解释湍流现象.doc》由会员分享,可在线阅读,更多相关《用混沌理论解释湍流现象.doc(9页珍藏版)》请在金锄头文库上搜索。

1、用混沌理论解释湍流现象一、历史的简短回顾湍流问题曾被称为“经典物理学最后的疑团”。因为它涉及到从微观到宏观许多时空尺度上的运动,它不仅和周围进行着能量交换,其内部也存在着各式各样的能量交换。有人估计:在一个线度为的湍流中,信息产生率为其中v为运动学粘滞系数,u为湍流中最大漩涡的速度。据此,即使是一杯咖啡被搅拌时也会产生1012比特/秒的信息。难怪对湍流的研究进展甚缓,至今还停留在半经验理论的水平上。 早在阿基米德时代,人们就注意到了湍流现象。1883年雷诺(Reynolds)指出:当流体的雷诺数R大于某个临界值Rc时,它就从层流向湍流转化。尔后,他又提出了著名的雷诺方程,试图用确定论的方法来解

2、决这个问题,然而始终没有得到明确的结果。从本世纪30年代开始,泰勒(Taylor)、卡曼(Karman)、哥尔莫柯洛夫(Kolmogorov)、周培源等人创立了湍流的统计理论,把概率论的方法引进了这个领域。这不能不说是一个重大的进展,湍流中大漩涡套着中漩涡,中漩涡套着小漩涡,互相交叉互相混杂,这些运动着的漩涡数量之巨、种类之多、相互作用之繁决不是用几个甚至几十个确定论的方程可以描述的。这几十年来,湍流的统计理论有了很大的发展,但是对这个复杂的问题几乎没有引出什么定量的预测。随着科学的发展,电子计算机的诞生,在最近的实验和理论研究中都出现了有希望的新方向,研究的重点是一些能为理论研究所接受的比较

3、简单的湍流发生机制,研究的对象也从流体力学扩充到物理、生物、化学、天文、地学等领域。有人认为,对这个问题的研究很可能导致物理学的又一次革命开辟对“复杂”系统研究的新途径。二、新的方向我们知道:从理论上解决湍流问题的重大障碍是流体力学基本方程纳维尔斯托克斯(NavierStockes)公式(2)的非线性。以前只知道这类方程的定常解不稳定,会出现分岔,至于这以后会发生什么就不清楚了。1963年,洛伦兹(Lorentz)在电子计算机上进行大气对流的数值实验时,发现一个完全确定的三阶常微分方程组,在一定的参数范围内给出了非周期的、看起来很混乱的输出。传统的观念根本无法解释洛伦兹的发现。起先他以为随机性

4、来自计算机的误差,在排除了种种随机因素后还是出现了上述现象。面对事实,他冲破了旧的观念,提出了一种新的湍流发生机制。由于受到当时科学水平的限制,人们没有也不可能意识到这项工作的划时代意义,加之论文登在一本不太出名的杂志上,所以一直过了将近十年,这项工作才被重视起来。人们开始认识到确定论系统的内在随机性混沌(chaos)是客观事物固有的特性,对它的研究很可能导致湍流问题的突破性进展。 确实,混沌现象的发现是人类认识自然的又一次飞跃。以前,我们把对自然界的描述分为确定论和概率论这二套看起来完全对立的方法,取得了很大的成功。但是对造成它们之间差别的原因,以及它们之间的联系等一系列根本问题,却始终没有

5、得到满意的答复。以致统计物理的奠基人玻尔兹曼(Boltzmann)也为此而苦恼万分,人们对随机性的出现存在两种观点。有文献认为,统计方法只是处理大量粒子体系的一种权宜之计,有朝一日它将要被精确的确定论计算淘汰掉。但是,比较多的人认为:对于大量粒子所组成的复杂系统而言,统计规律是它们本身所特有的,决不能把它还原为力学规律。从确定论到概率论的发展在哲学上常常用来说明量的增加必定导致质的改变。但是对于中间的转化过程,由于缺乏必要的手段,所以一直没有搞清楚。电子计算机的应用使我们找到了这个问题的答案:只要确定论的系统稍微复杂一点,它就会出现随机行为,被人奉为确定论的典型牛顿力学具有内在的随机性。在确定

6、论和概率论的描述之间存在着由此及彼的桥梁。混沌理论刚出现就解决了这个百年悬案,所以有人把混沌理论和确定论、概率论并列起来,作为人类认识客观世界的又一套方法论,称为混沌论。在近阶段,混沌理论在哲学上的意义远大于它在一些具体问题上的意义,它标志了人类对客观世界的认识已进入了一个新阶段不仅对“非此即彼”的明晰形态,而且对“亦此亦彼”的过渡性形态都能进行比较详细的研究。与随机性相关的混沌理论以及与可能性相关的模糊数学都在迅速地发展着,虽然它们研究的对象不尽相同,但是它们所描述的都是客观事物的不确定性。为了说明什么是混沌现象,我们考察如下的迭代过程:如果把参数a限制在0,2区间内,上式便是从线段I=-1

7、,1到它自身的一个非线性映象。这种映象可以记为f(xn),它表示经过n次迭代所得到的结果。f(x1),f(x2),是对离散时间(n相当于tn,t1)的不可逆演化序列。它所描写的是一个最简单的耗散系统。在参数a的增加过程中,迭代将出现多次突变。 当0a0.75时,在x1,1内任选一个初值x0,迭代过程故谓之不稳定不动点或排斥子。当a变化时,原来的稳定不动点可能失稳,但同时又会产生新的不动点。当0.75a1.25时,迭代结果将趋于两个数值交替出现的状态,我们称它为2点周期。a1.25后又会出现22点周期,尔后相继出现稳定的2n点周期(n=3,4,5,)。当aa1.40115时迅速达到无穷长周期:n

8、。我们称区间0,a为倍周期区,随着a从小到大它可分为一周期区、二周期区、2n周期区。在上述过程中,每一个稳定的周期在分岔点上都分为二个稳定的周期,通常称之为倍周期分岔。当aa后,多数迭代结果看起来象是分布在一定区间内的随机数,这就是混沌现象,区间a,2叫做混沌区。在混沌区内,根据随机数在x-1,1区间内分布区域的多少我们就说有几个混沌带。随着a从小到大,混沌区可分为一带区、二带区、2n带区,当a趋向a时n。此外,在混沌区中还嵌套着许许多多周期窗口。关于这个迭代更细致的结构,无论从计算机实验还是从严格的解析理论中都发现了下面几个重要的性质。(1)MSS规则:上述映射的周期结构(包括周期数、循环方

9、式)在参数轴上的排列具有相同的顺序,对任意周期P,在参数增大的方向上,按顺序有2p,4p,8p,2np,的倍周期序列。周期区和混沌区内均存在倍周期序列。(2)萨可夫斯基(Sarkovskii)定理:混沌区内一带区中主要周期窗口随着参数的减小依次(不相连接)为3,5,7,类似地2n带区中主要周期窗口为2n3,2n5,2n7,混沌区内主要周期窗口的排列也是有章可循的。(3)DGP内部相似定律:对任一周期p,在它的右边必定存在一个区间,这个区间内的结构与整个参数区间内的结构相似,但是它的周期为后者的p倍。定律显示了混沌区内存在着无穷嵌套的自相似几何结构,同一种行为在越来越小的尺度上重复出现。这样的图

10、象颇具我国古代所刻划的混沌“气似质具而未相离”的风格。1977年菲金堡姆(Feigenbaum)用一个可编程序的计算器配合几何作图的方法证明了:单峰映射相邻的倍周期分岔点之间的距离当n时,存在着一个普适常数 =4.6692016091029。在无穷嵌套的自相似几何结构中,相邻二个结构之间的标度变换因子,当n时也将趋向一个常数a2.5029078750957。郝柏林在1981年发现,参数从小到大靠近分岔点时,迭代将发生临界慢化现象达到定态的时间趋向无穷大(4) 其中慢化指数=1,恰好与相变现象的平均场理论一致。所不同的是这里呈现为“单边”慢化,它发生在从低阶分岔状态往高阶分岔状态接近的过程中。

11、上述各种普适性和标度律,对于相当多的一维映射都成立。由微分方程所描述的复杂的实际过程往往可以化为高维映射。实践表明高维映射也具有这样的性质。法兰斯西尼(VFranceschini)等人报导过纳维尔斯托克斯方程的演化过程中所看到的倍周期分岔序列和混沌区域,以及它们的普适常数和标度变换因子。虽然这些讨论仅限于少自由度系统的时间演化过程,尚未同时涉及到空间分布,但是它至少显示了流体力学的基本方程中也有内在的随机性。人们越来越有信心在这个方程的框架内,用混沌的观点来说明流体从层流到湍流的演化过程。定量关系的发现使人们自然地把包括了分岔和混沌的“突变”现象和物理中已经研究得很透彻的“相变”现象进行更深刻

12、的类比。这方面工作的蓬勃开展有三个背景。首先,体系远离平衡态的失稳(突变)和体系从一种热力学的平衡态转变到另一种平衡态(相变)有许多类似的地方。在定量规律发现以前已经有不少人从事这一方面的工作。其次,数学家托姆(Thom)在70年代初创立了“突变论”(catastrophetheory),使得“突变”和“相变”处于同一个数学理论的框架之下,从数学上提供了开展这项工作的保障。第三,恰逢威尔逊(Wilson)用重整化群方法处理了相变(这是个牵涉到无穷维自由度的难题),并取得了很大成功,再者,菲金堡姆用简单的设备所发现的如此重要的规律性,也颇具传奇色彩,它给人以科学的源泉永远不会枯竭,人类的认识永远

13、不会穷尽的启迪。广大科学工作者看到了解决湍流问题的新方向。三、奇怪吸引子在研究实际情况的高维映射中,除了具有与一维映射类似的性质外,还存在着相空间的相似性。这种相似性是由奇怪吸引子的分数维数所描述的。和通常的高维吸引子不同,奇怪吸引子的形状,既非曲线也非曲面,而是由离散点集组成的,点集中任何二个相邻的点之间必定存在不属于这个点集的点。为了具体说明这个问题让我们考察埃农(Henon)映射xn+1=1-ax2n+ynynbxn (5)这是一个二维映象,b=0.3,a0.4时它是一个耗散系统,经过10000次迭代后,人们可以绘制出点集(x,y)的图A来。如果把迭代次数增加到10万次取出A图中的一小块

14、放大绘成B图,可以看出它仍有内部结构。迭代100万次,再取出B图中的一小块放大,人们会得到与B相似的C图藉此不难想像出高维映象中奇怪吸引子的性态。奇怪吸引子的出现是由于高维相空间中的耗散系统,在演化过程中要耗损掉快弛豫参量,剩下决定系统长时间行为的慢弛豫参量。在这过程中,系统的相体积要不断地收缩,并趋向一个维数比原来相空间维数低的有限区域吸引子上;方程的非线性,使得某些方向上的运动是不稳定的,局部看来呈指数分离。为了在有限的区域里进行指数分离,空间运动轨道只能采取无穷次折迭起来的办法。奇怪吸引子吸引一切在它外面的运动,而它内部的运动轨道又是互相排斥的,它是吸引与排斥二种趋势相斗争、妥协的结果。

15、它所描述的相空间中无穷嵌套的自相似结构和湍流中大漩涡套小漩涡的情景有异曲同工之妙。所以罗埃尔在1971年就提出了湍流就是奇怪吸引子的观点。瞬息万变的湍流现象内部有无限多的层次,但是我们一旦抓住了各个层次上的共同特征及其本质的规律后就可以化繁为简,构造出奇怪吸引子这个处处稀疏、处处不连续的几何对象来刻划它。由于奇怪吸引子的行为特异,所以至今还没有为人们普遍接受的定义,但是下面的性质是公认的。奇怪吸引子上的运动对于初始条件十分敏感,因而不存在周期性。其结果使体系遍历各种可能的状态。这种谓之遍历性的性质将初始条件的影响彼此抵消、互相调匀了,为我们用统计方法描述体系的性质提供了依据。奇怪吸引子的另一个特征便是作为相空间中的子集合,往往具有非整数维数。这是豪斯道夫(Hausdorff)1919年引入的维数概念:它表明对于p维空间中的子集合,需要用N块边长为(任意值)的d维方块去覆盖。为了使覆盖越来越精确,必须使趋向零,也即用无限多个小方块来覆盖无限多个点,通过求它们的比值把无限维的问题转化为有限的情况来处理,所以往往呈分数的形式。非整维数的引进把牛顿、爱因斯坦以来的时空观又向前推进了一大步。作为非整维数的实例,我们介绍一下康托尔(Cantor)集合,它是由线段0,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号