OTDR在光纤测量中应用.doc

上传人:cn****1 文档编号:542635813 上传时间:2024-02-29 格式:DOC 页数:9 大小:91.50KB
返回 下载 相关 举报
OTDR在光纤测量中应用.doc_第1页
第1页 / 共9页
OTDR在光纤测量中应用.doc_第2页
第2页 / 共9页
OTDR在光纤测量中应用.doc_第3页
第3页 / 共9页
OTDR在光纤测量中应用.doc_第4页
第4页 / 共9页
OTDR在光纤测量中应用.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《OTDR在光纤测量中应用.doc》由会员分享,可在线阅读,更多相关《OTDR在光纤测量中应用.doc(9页珍藏版)》请在金锄头文库上搜索。

1、OTDR在光纤测量中的应用光时域反射计OTDR(Optical Time Domain Reflectometer)是表征光纤传输特性的测试仪器。此仪器主要用于测试整个光纤链路的衰减并提供与长度有关的衰减细节,具体表现为探测、定位和测量光纤链路上任何位置的事件(事件是指因光纤链路中熔接、连接器、弯曲等形成的缺陷,其光传输特性的变化可以被测量)。OTDR测试的非破坏性、只需一端接入及直观快速的优点使其成为光纤光缆生产、施工、维护中不可缺少的仪器。1OTDR原理1.1瑞利后向散射由于光纤本身的缺陷和掺杂组分的非均匀性,使得光纤中传播的光脉冲发生瑞利散射。一部分光(大约有0.0001%1)沿脉冲相反

2、的方向被散射回来,因而被称为瑞利后向散射,后向散射光提供了与长度有关的衰减细节。设注入光功率为P0,则沿光纤传输到z处的后向散射光再传回到始端的光功率为其中,f(z)、b(z)分别为z处正向、后向传输时的衰减系数,(z)为光纤在z处的后向散射系数,与瑞利散射系数及光纤的结构参数有关。如果能测得z1,z2两处散射回来的光功率,即可求得z1,z2间前后向传输的平均衰减系数若光纤结构参数沿轴向均匀(即(z1)(z2)时,则z1和z2点间的衰减系数可表述为与距离有关的信息是通过时间信息而得到的(此即光时域反射计中时域的由来),OTDR测量发出脉冲与接收后向散射光的时间差,利用折射率n值将这一时域信息转

3、换成距离其中c为光在真空中的速度(3108m/s)OTDR可以非常精确测量后向散射光功率P(z1)、P(z2),并通过式(3)与式(4)来测量沿光纤长度上任一点光纤特性的微小变化,如图1所示。图1OTDR曲线与光纤链路的对应关系在不同折射率两传输介质的边界(如连接器、机械接续、断裂或光纤终结处)会发生菲涅耳反射,此现象被OTDR用于准确确定沿光纤长度上不连续点的位置。反射的大小依赖于边界表面的平整度及折射率差,利用折射率匹配液可减小菲涅耳反射。1.2OTDR结构方框图图2OTDR原理结构方框图图2是OTDR原理结构方框图。脉冲发生器发出宽度可调的窄脉冲驱动激光二极管(LD),产生所需宽度的光脉

4、冲(通常为2ns20s),经方向耦合器后入射到被测光纤,光纤中的后向散射光和菲涅耳反射光经耦合器进入光电探测器,光电探测器把接收到的散射光和反射光信号转换成电信号,由放大器放大后送信号处理部件处理(包括取样、模数转换和平均),结果由显示部件显示:纵轴表示功率电平,横轴表示距离。时基与控制单元控制脉冲宽度、取样和平均。2OTDR主要性能指标对OTDR的性能参数的了解有助于OTDR的实际光纤测量。OTDR性能参数主要包括动态范围、盲区、分辨率、精度等。2.1动态范围(Dynamic range)动态范围是OTDR主要性能指标之一,它决定光纤的最大可测量长度。动态范围越大,曲线线型越好,可测距离也越

5、长。动态范围目前还没有一个统一的标准计算方法1,常用的动态范围定义主要有以下四种:IEC定义(Bellcore):常用的动态范围定义之一。取始端后向散射电平与噪声峰值电平间的dB差,测量条件为取OTDR最大脉冲宽度、180秒的测量时间。RMS定义:最常用的动态范围定义。取始端后向散射电平与RMS噪声电平间的dB差。若噪声电平呈高斯分布,则RMS的定义值比IEC定义值高约1.56dB。N0.1dB定义:最实用的定义方法。取可以测量损耗为0.1dB事件时的最大允许衰减值。N0.1dB定义值比信噪比SNR1的RMS定义值小大约6.6dB,这意味着若OTDR有30dB的RMS动态范围,则N0.1dB定

6、义的动态范围只有23.4dB,即只能在23.4dB衰减范围内测量损耗为0.1dB的事件。端探测(End detection):光纤始端的4%菲涅耳反射峰与RMS噪声电平的dB差,此值比IEC定义值高约12dB。上述四种动态范围定义可用图3表示。除以上四种常用的定义外,还有其它的定义方法。需要注意的是,对同样性能OTDR,不同的定义方法,动态范围值不同,在检查OTDR动态范围指标时必须清楚动态范围值是以哪种定义给出。图3动态范围的定义(对给定的平均时间和脉宽)2.2盲区(Deadzone)“盲区”又称“死区”,是指受菲涅耳反射的影响,在一定的距离范围内OTDR曲线无法反映光纤线路状态的部分。此现

7、象的出现主要是由于光纤链路上菲涅耳反射强信号使得光电探测器饱和,从而需要一定的恢复时间。盲区可发生在OTDR面板前的活结头或光纤链路中其它有菲涅耳反射的地方。Bellcore定义了两种盲区2:衰减盲区(ADZ)和事件盲区(EDZ)。衰减盲区是指各自的损耗可以分别被测量时的两反射事件间的最小距离,通常衰减盲区是56倍的脉冲宽度(用距离表示);事件盲区是指两个反射事件仍可分辨的最小距离,此时到每个事件的距离可测,但每个事件各自的损耗不可测。两种盲区的定义可用图4表示。图4衰减盲区(ADZ)与事件盲区(EDZ)的定义(-30dB反射)盲区的大小与脉冲宽度、反身系数、损耗等因素有关。脉宽越短,盲区越小

8、,但短脉冲同时又减小了动态范围,因此要在盲区和动态范围之间折衷选择脉宽。2.3分辨率(Resolution)OTDR有四种主要分辨率指标:取样分辨率、显示分辨率(又叫读出分辨率)、事件分辨率和距离分辨率。取样分辨率是两取样点之间最小距离,此指标决定了OTDR定位事件的能力。取样分辨率与脉宽和距离范围大小的选取有关。显示分辨率是仪器可显示的最小值。OTDR通过微处理系统将每个取样间隔细分,使光标可在取样间隔内移动,光标移动的最短距离为水平显示分辨率、所显示的最小衰减量垂直显示分辨率。事件分辨率是指OTDR对被测链路中事件点的分辨门限,也就是事件域值(探测阈),OTDR把小于这个阈值的事件变化当作

9、曲线中斜率均匀变化点来处理。事件分辨率由光电二极管的分辨阈决定,根据两接近的功率电平,指定可被测量的最小衰减。距离分辨率指仪器所能分辨的两个相邻事件点间的最短距离,此指标类似与事件盲区,与脉宽、折射率参数有关。2.4精度(Accuracy)表1性能指标波长(nm)动态范围(RMS定义)盲区(m)分辨率精度EDZADZ取样(m)显示事件(dB)距离(m)垂直水平衰减(dB/dB)距离(m)典型值13102030dB5150.25400.001dB0.25m0.0211000.021.515502028dB精度是OTDR的测量值与参考值的接近程度,包括衰减精度和距离精度。衰减精度主要是由光电二极管

10、的线性度决定的,目前大多数OTDR的线性度可达0.02dB/dB。距离精度依赖于折射率误差、时基误差(10-410-5范围内变动)以及取样分辨率,在不考虑折射率误差时,距离精度可用下式表达1: 距离精度1m510-5距离取样分辨率(5)除以上几种性能指标外,还包括波长、测量时间等指标。另外,大多数OTDR还提供曲线存储、输出端口等功能。下表为目前OTDR典型性能指标值。3OTDR的使用OTDR可执行下面的测量:*对每个事件:距离,损耗,反射*对每个光纤段:段长,段损耗dB或dB/Km,段回波损耗(ORL)*对整个终端系统:链长度,链损耗dB,链ORL用OTDR进行光纤测量可分为三步:参数设置、

11、数据获取和曲线分析。3.1参数设置大多数OTDR对待测光纤通过发射测试脉冲自动地选择最佳的获取参数,使用者只需选择波长、获取时间及必要的光纤参数(如折射率、散射系数等)。自动获取参数需要一定的时间,因而,在已知测量条件下,操作者可人工选择测量参数。3.1.1波长选择光系统的行为与传输波长直接相关,不同的波长有各自不同的光纤衰减特性及光纤连接中不同的行为:同种光纤,1550nm比1310nm光纤对弯曲更敏感、1550nm比1310nm单位长度衰减更小、1310nm比1550nm测得熔接或连接器损耗更高。为此,光纤测试应与系统传输的波长相同,这意味着1550nm光系统需选择1550nm的波长。3.

12、1.2脉宽脉宽控制OTDR注入光纤的光功率,脉宽越长,动态测量范围越大,可用于测量更长距离的光纤,但长脉冲也将在OTDR曲线波形中产生更大的盲区;短脉冲注入光平低,但可减小盲区。脉宽周期通常以ns来表示,也可根据公式(4)用长度单位(m)来表示。例如100ns脉冲可以解释为“10m”脉冲。3.1.3测量范围OTDR测量范围是指OTDR获取数据取样的最大距离,此参数的选择决定了取样分辨率的大小。测量范围通常设置为待测光纤长度12倍距离之间。3.1.4获取时间由于后向散射光信号极其微弱(大约每米100光子),一般采用统计平均的方法来提高信噪比,获取时间越长,信噪比越高。理论上,平均时间(或次数)对

13、信噪比的改善可用下式表示1,其中SNIR代表动态增益,N代表平均次数。例如,3分钟的获取将比1分钟的获取提高0.8dB的动态。但超过10分钟的获取时间对信噪比的改善并不大。3.1.5光纤参数光纤参数的设置包括折射率n和后向散射系数的设置。折射率参数与距离测量有关,后向散射系数则影响反射与回波损耗的测量果。这两个参数通常由光纤生产厂家给出,对于大多数种类的光纤来说,表2给出的折射率和后向散射系数可以得到较为准确的距离和回损测量结果。模式多模单模波长850nm1300nm1310nm1550nm折射率1.4771.47191.46801.4685散射系数-62.3-69.7-80.3-82.3表2

14、3.2数据获取参数设置好后,按开始键,OTDR即可发送光脉冲并接收由光纤链路散射和反射回来的光,每隔一定的时间(即取样时间间隔)就对光电探测器的输出取样,所有取样点的连线通过平滑处理构成了该光纤链路的OTDR曲线。3.3曲线分析大多数现代OTDR可进行全自动测量而很少用户介入。这种情况下,OTDR自动探测和测量所有事件、段和光纤终结,并以图形和列表的形式给出测量结果。但有时需要操作者对OTDR曲线进行手动分析。距离和段长:距离和光纤段长测量的准确性很大程度上取决于光标的正确置位,精确定位光标时,需扩展窗口,使窗口能显示更多的细节。测量事件的位置,只需将光标A置于事件前缘开始,如图5(a)所示;

15、如要测量两事件的距离,则将光标A、B分别置于事件前缘开始,如图5(b)所示。位置、距离测量的结果将直接显示在屏幕上。事件损耗:事件损耗包括反射事件和非反射事件损耗的测量。有两种手动测量事件损耗的方法:两点法和LSA法。两点法:置两光标A、B于待测事件前、后缘线性电平之上,事件损耗就是这两光标处后向散射曲线电平之差,如图6(a)所示。然而这种方法的准确性受限于曲线平滑度以及使用者正确置位光标能力,如图6(b)所示。LSA法:置光标A、B于待测事件前后缘线性电平之上并尽量靠近待测事件,光标a、b于待测事件两边线性电平之上并尽量往两端延伸,但绝对不能包括任何明显的事件,如图6(c)所示,仪表通过LSA(最小二乘近似)法计算出光标A,a之间及光标B、b之间的LSA线,两LAS线的延长线在光标A上的截距即为该事件的损耗。有些OTDR只需将光标A、B定位

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号