文档详情

带电粒子在磁场中的运动归纳总结之题目汇编——带答案

夏**
实名认证
店铺
DOC
44.50KB
约9页
文档ID:536756607
带电粒子在磁场中的运动归纳总结之题目汇编——带答案_第1页
1/9

  带电粒子在磁场中运动题型小结一、带电粒子在匀强磁场中匀速圆周运动基本问题找圆心、画轨迹是解题的基础带电粒子垂直于磁场进入一匀强磁场后在洛伦兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题二、带电粒子在有界磁场中的运动有界匀强磁场指在局部空间存在着匀强磁场,带电粒子从磁场区域外垂直磁场方向射入磁场区域,在磁场区域内经历一段匀速圆周运动,也就是通过一段圆弧后离开磁场区域.由于运动的带电粒子垂直磁场方向,从磁场边界进入磁场的方向不同,或磁场区域边界不同,造成它在磁场中运动的圆弧轨道各不相同.如下面几种常见情景:解决这一类问题时,找到粒子在磁场中一段圆弧运动对应的圆心位置、半径大小以及与半径相关的几何关系是解题的关键.1.三个(圆心、半径、时间)关键确定:研究带电粒子在匀强磁场中做圆周运动时,常考虑的几个问题:(1)圆心的确定:已知带电粒子在圆周中两点的速度方向时(一般是射入点和射出点),沿洛伦兹力方向画出两条速度的垂线,这两条垂线相交于一点,该点即为圆心.(弦的垂直平分线过圆心也常用到) (2)半径的确定:一般应用几何知识来确定.(3)运动时间:t=T=T(θ、φ为圆周运动的圆心角),另外也可用弧长Δl与速率的比值来表示,即t=Δl/v. (4)粒子在磁场中运动的角度关系:粒子的速度偏向角(φ)等于圆心角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍,即φ=α=2θ=ωt;相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即θ′+θ=180°。

2.两类典型问题(1)极值问题:常借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值.注意 ①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.③当速率v变化时,圆周角大的,运动时间长.(2)多解问题:多解形成的原因一般包含以下几个方面:①粒子电性不确定②磁场方向不确定;③临界状态不唯一;④粒子运动的往复性等关键点:①审题要细心.②重视粒子运动的情景分析.三、带电粒子在复合场中的运动复合场是指电场、磁场和重力场并存,或其中某两场并存,或分区域存在的某一空间.粒子经过该空间时可能受到的力有重力、静电力和洛伦兹力.处理带电粒子(带电体)在复合场中运动问题的方法:1.正确分析带电粒子(带电体)的受力特征.带电粒子(带电体)在复合场中做什么运动,取决于其所受的合外力及其初始速度.带电粒子(带电体)在磁场中所受的洛伦兹力还会随速度的变化而变化,而洛伦兹力的变化可能会引起带电粒子(带电体)所受的其他力的变化,因此应把带电粒子(带电体)的运动情况和受力情况结合起来分析,注意分析带电粒子(带电体)的受力和运动的相互关系,通过正确的受力分析和运动情况分析,明确带电粒子(带电体)的运动过程和运动性质,选择恰当的运动规律解决问题.2.灵活选用力学规律(1)当带电粒子(带电体)在复合场中做匀速运动时,就根据平衡条件列方程求解.(2)当带电粒子(带电体)在复合场中做匀速圆周运动时,往往同时应用牛顿第二定律和平衡条件列方程求解.(3)当带电粒子(带电体)在复合场中做非匀变速曲线运动时,常选用动能定理或能量守恒定律列方程求解.(4)由于带电粒子(带电体)在复合场中受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好"、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,根据隐含条件列出辅助方程,再与其他方程联立求解.(5)若匀强电场和匀强磁场是分开的独立的区域,则带电粒子在其中运动时,分别遵守在电场和磁场中运动规律,处理这类问题的时候要注意分阶段求解.一、“磁偏转”与“电偏转”的区别(复合场问题,不叠加)例1 如图1所示,在空间存在一个变化的匀强电场和另一个变化的匀强磁场.从t=1 s开始,在A点每隔2 s有一个相同的带电粒子(重力不计)沿AB方向(垂直于BC)以速度v0射出,恰好能击中C点.AB=BC=l,且粒子在点A、C间的运动时间小于1 s.电场的方向水平向右,场强变化规律如图2甲所示;磁感应强度变化规律如图乙所示,方向垂直于纸面.求:(1)磁场方向; (2)E0和B0的比值;(3)t=1 s射出的粒子和t=3 s射出的粒子由A点运动到C点所经历的时间t1和t2之比.A变式训练1 图3所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xOy平面向外.一电荷量为q、质量为m的带正电的运动粒子,经过y轴上y=h处的点P1时速率为v0,方向沿x轴正方向;然后,经过x轴上x=2h处的P2点进入磁场,并经过y轴上y=-2h处的P3点,不计粒子重力.求:(1)电场强度的大小; (2)粒子到达P2时速度的大小和方向;(3)磁感应强度的大小.二、有界匀强磁场问题例2 半径为r的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A点以速度v0垂直磁场方向射入磁场中,并从B点射出.∠AOB=120°,如图5所示,则该带电粒子在磁场中运动的时间为(  )A. B. C。

D 图5 图6 图7 图8 图9变式训练2 图6是某离子速度选择器的原理示意图,在一半径R=10 cm的圆柱形筒内有B=1×10-4 T的匀强磁场,方向平行于圆筒的轴线.在圆柱形筒上某一直径两端开有小孔a、b,分别作为入射孔和出射孔.现有一束比荷=2×1011 C/kg的正离子,以不同角度α入射,最后有不同速度的离子束射出.其中入射角α=30°,且不经碰撞而直接从出射孔射出的离子的速度v的大小是(  )A.4×105 m/s B.2×105 m/s C.4×106 m/s D.2×106 m/s三、洛伦兹力作用下形成多解的问题A例3 如图7所示,长为L的水平极板间,有垂直纸面向里的匀强磁场,磁感应强度为B,板间距离为L,极板不带电.现有质量为m、电荷量为q的带正电粒子(重力不计),从左边极板间中点处垂直磁场以速度v水平入射.欲使粒子不打在极板上,可采用的办法是(  )A.使粒子速度v< B.使粒子速度v> C.使粒子速度v> D.使粒子速度<v<变式训练3 如图8所示,左右边界分别为PP′、′的匀强磁场的宽度为d,磁感应强度大小为B,方向垂直纸面向里.一个质量为m、电荷量为q的微观粒子,沿图示方向以速度v0垂直射入磁场.欲使粒子不能从边界′射出,粒子入射速度v0的最大值可能是(  )A. B. C. D。

即学即练】 1 三个完全相同的小球a、b、c带有相同电量的正电荷,从同一高度由静止开始下落,当落下h1高度后a球进入水平向左的匀强电场,b球进入垂直纸面向里的匀强磁场,如图9所示,它们到达水平面上的速度大小分别用va、vb、vc表示,它们的关系是(  )A.va>vb=vc B.va=vb=vc C.va>vb〉vc D.va=vb〉vc2.设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图10所示,已知一离子在电场力和洛伦兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,以下说法正确的是(  )A.离子必带正电荷 B.A点和B点位于同一高度C.离子在C点时速度最大 D.离子到达B点时,将沿原曲线返回A点 3.如图所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场.一带电粒子a(不计重力)以一定的初速度由左边界的O点射入磁场、电场区域,恰好沿直线由区域右边界的O′点(图中未标出)穿出.若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b(不计重力)仍以相同初速度由O点射入,从区域右边界穿出,则粒子b(  )A.穿出位置一定在O′点下方 B.穿出位置一定在O′点上方C.运动时,在电场中的电势能一定减小 D.在电场中运动时,动能一定减小 4.如图是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。

平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1、A2平板S下方有磁感应强度为B0的匀强磁场.下列表述正确的是(  )A.质谱仪是分析同位素的重要工具B.速度选择器中的磁场方向垂直纸面向外C.能通过狭缝P的带电粒子的速率等于E/BD.粒子打在胶片上的位置越靠近狭缝P,粒子荷质比越小四、带电粒子在磁场中轨道半径变化问题  导致轨道半径变化的原因有:①带电粒子速度变化导致半径变化如带电粒子穿过极板速度变化;带电粒子使空气电离导致速度变化;回旋加速器加速带电粒子等②磁场变化导致半径变化.如通电导线周围磁场,不同区域的匀强磁场不同;磁场随时间变化③动量变化导致半径变化如粒子裂变,或者与别的粒子碰撞;④电量变化导致半径变化.如吸收电荷等总之,由看m、v、q、B中某个量或某两个量的乘积或比值的变化就会导致带电粒子的轨道半径变化  (06年全国2)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向垂直于纸面向里,且B1>B2.一个带负电的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件?五、带电粒子在磁场中运动的临界问题和带电粒子在多磁场中运动问题  带电粒子在磁场中运动的临界问题的原因有:粒子运动范围的空间临界问题;磁场所占据范围的空间临界问题,运动电荷相遇的时空临界问题等。

审题时应注意恰好,最大、最多、至少等关键字  (07全国1)两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y轴,交点O为原点,如图所示.在y〉0,00,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B在O点处有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0〈x〈a的区域中运动的时间与在x〉a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中作圆周运动的周期.试求两个荧光屏上亮线的范围(不计重力的影响).六、带电粒子在有界磁场中的极值问题  寻找产生极值的条件:①直径是圆的最大弦;②同一圆中大弦对应大的圆心角;③由轨迹确定半径的极值  例题:有一粒子源置于一平面直角坐标原点O处,如图所示相同的速率v0向第一象限平面内的不同方向发射电子,已知电子质量为m,电量为e欲使这些电子穿过垂直于纸面、磁感应强度为B的匀强磁场后,都能平行于x轴沿+x方向运。

下载提示
相似文档
正为您匹配相似的精品文档