行测数字推理八大解题技巧

上传人:cl****1 文档编号:523784539 上传时间:2023-05-07 格式:DOC 页数:24 大小:835KB
返回 下载 相关 举报
行测数字推理八大解题技巧_第1页
第1页 / 共24页
行测数字推理八大解题技巧_第2页
第2页 / 共24页
行测数字推理八大解题技巧_第3页
第3页 / 共24页
行测数字推理八大解题技巧_第4页
第4页 / 共24页
行测数字推理八大解题技巧_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《行测数字推理八大解题技巧》由会员分享,可在线阅读,更多相关《行测数字推理八大解题技巧(24页珍藏版)》请在金锄头文库上搜索。

1、.数字推理八大解题方法【真题精析】例1.2,5,8,11,14,( )A15 B16 C17 D18答案C解析数列特征明显单调且倍数关系不明显,优先采用逐差法。差值数列是常数列。如图所示,因此,选C。【真题精析】例1、(2006国考A类)102,96,108,84,132,( )A36 B64 C70 D72答案A解析数列特征明显不单调,但相邻两项差值的绝对值呈递增趋势,尝试采用逐差法。差值数列是公比为-2的等比数列。如图所示,因此,选A。【真题精析】 例1.(2009江西)160,80,40,20,( )A B1 C10 D5答案C解析数列特征明显单调且倍数关系明显,优先采用逐商法。商值数列

2、是常数列。如图所示,因此,选C【真题精析】例1、2,5,13,35,97,( ) A214 B275 C312 D336答案B解析数列特征明显单调且倍数关系明显,优先采用逐商法。商值数列是数值为2的常数列,余数数列是J2-I:h为3的等比数列。如图所示,因此,选B。【真题精析】例1、(2009福建)7,21,14,21,63,( ),63A35 B42 C40 D56答案B解析数列特征明显单调且倍数关系明显,优先采用逐商法。商值数列是以 为周期的周期数列。如图所示,因此,选B。【真题精析】例1 8,8,12,24,60,( )A90 B120 C180 D240答案C解析逐商法,做商后商值数列

3、是公差为0.5的等差数列。【真题精析】例1. -3,3,0,3,3,( )A6 B7 C8 D9答案A解析数列特征:(1)单调关系不明显;(2)倍数关系不明显;(3)数字差别幅度不大。优先采用加和法。【真题精析】例1、(2008湖北B类)2,3,5,10,20,( )A30 B35 C 40 D45答案C解析数列特征明显单调且倍数关系不明显,优先做差后得到结果选项中不存在;则考虑数列特征:(1)倍数关系不明显;(2)数字差别幅度不大,采用加和法。还是无明显规律。再仔细观察发现,2+3=5,2+3+5=10,2+3+5+10=20。因此原数列未知项为2+3+5+10+20=40。此数列为全项和数

4、列,其规律为:前面所有项相加得后一项。如图所示,因此,选C。【真题精析】例1、 1,2,2,4,8,32,( ) A64 B128 C160 D256答案D解析数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。优先采用累积法。【真题精析】例1、1,1,2,2,4,16,( ) A32 B64 C128 D256答案C解析数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。积后无明显规律,尝试三项求积。即从第四项起,每一项都是前面三项的乘积。因此,选C。【真题精析】例1、(2008河北)1,2,2,4,16,( ) A64 B128 C160 D256答案D解析

5、数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。优先采用累积法。 做积后无明显规律。仔细观察发现,12=2,122=4,1224=16,122416=(256)。此数列是全项积数列,从第三项起,每一项都是前面所有项的乘积。因此,选D。【真题精析】例1. (2007国考)0,2,10,30,( )A68 B74 C60 D70答案A解析数列项数较少,做一次差后无明显规律,不能继续做差,因此考虑使用因数分解将原数列化为如下形式:分别观察由0,1,2,3和1,2,5,10组成的数列,前者是公差为1的等差数列,后者做一次差后得到奇数数列,推断其第五项分别为4和17,故所填数字应为4

6、X17=68,答案为A。【真题精析】例1. 1,2,5,10,17,( ) A24 B25 C26 D27答案C解析此题的突破口建立在“数字敏感”的基础之上。由数字5,10,17,联想到5=4+1,10=9+1, 17=16+1,故可以判定此数列由多次方数构造而成。平方数列的底数是自然数列。如上所示,因此,选C。【真题精析】例1. (2009天津)187,259,448,583,754,( ) A847 B862 C915 D944答案B解析原数列单调关系明显,倍数关系不明显,优先使用逐差法无明显规律;观察数列特征:多位数连续出现,幅度变化无明显规律,考虑位数拆分。对原数列各数位进行求和:1+

7、8+7=16,2+5+9=16,4+4+8=16,5+8+3=16,7+5+4=16,(8+6+2=16),原数列中所有项各位数字相加之和为16。因此,选B。【真题精析】例1.答案A解析数列中大部分为非最简分数,优先考虑将其约分变为最简分数。得到常数列。如上所示,因此,选A。【真题精析】例1、答案A解析数列中有两项的分母相同,且为另外两项的倍数。因此,先进行通分将各项的分母统一为12。得到的分子数列为质数列。如上所示,因此,选A。【真题精析】例1、答案B解析数列特征不明显,由联想到中间的2可化成。此时,各项的分子分母表现出一定的单调性,因此考虑将反约分化为。根据该思路,将原数列进行变形。分子数

8、列、分母数列都是自然数列。如上所示,因此,选B。【真题精析】例1、答案C解析分别分析各项的整数部分与分数部分。整数部分为平方数列,分数部分是公比为的等比数列,如上所示,故未知项为81+1=82,因此,选C。【真题精析】例1、答案C解析数列的二、三、六项分别出现, 因此考虑将一、四项拆分出带有根号的式子。【真题精析】例1. (2010江西)3,3,4,5,7,7,11,9,( ),( )A13,11 B16,12 C18,11 D17,13答案C解析数列较长,数字变化幅度不大,并且有两个未知项,优先进行交叉分组。【真题精析】例1、 (2007河北)1,2,2,6,3,15,3,21,4,( )A

9、46 B20 C12答案D解析数列不具有单调性,变化幅度不大且数列较长,优先使用多元素分组法。由于相邻两项之间具有明显的倍数关系,故考虑两两分组。得到质数列。如图所示,因此,选D。【真题精析】例1、8,6,10,11,12,7,( ),24,28 A15 B14 C9 D18答案B解析数列单调关系和倍数关系均不明显,变化幅度不大,项数较多,优先采用多元素分组法。交叉及分段分组都没有明显的规律,尝试采用对称分组法。对称分组后组内求和,得到公差为6的等差数列。如图所示,因此,选B。【真题精析】例1、1,2,3,7,16,( ) A66 B65 C64 D63答案B解析基于“数形敏感”,由数列的三、

10、四、五项可以得出 。经过验证有:2,故该数列的通项为 因此,所填数字为 ,答案为B。【真题精析】例1、2,12,36,80,( )A100 B125 C150 D175答案C解析基于“数字敏感”,数列的第四项80可以拆分成,第三项可以拆分成36=,基于“数列敏感”,可以推测数列是由平方数列和立方数列相加得到,经过验证有2=1+1,故数列的通项公式为。因此,所求数字为150,答案选C。【真题精析】例1、6,12,36,102,( ),3A24 B71 C38 D175答案A解析数列各项都可以被3整除。数字推理技巧总结(简单精辟!)2008-10-11 17:21数字推理技巧总结: 备考规律一:等

11、差数列及其变式(后一项与前一项的差d为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1) 后面的数字与前面数字之间的差等于一个常数。如7,11,15,( 19 ) (2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。如7,11,16,22,( 29 ) (3) 后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。如7,11,13,14,( 14.5 ) (4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。【例题】7,11,6,12,( 5 )(5) 后面的数字与前

12、面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。 【例题】7,11,16,10,3,11,(20 ) 备考规律二:等比数列及其变式(后一项与除以前一项的倍数q为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。 【例题】4,8,16,32,( 64 )(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。 【例题】4,8,24,96,( 480 )(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘2【例题】4,8,32,256,( 4096 )(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为3的n次方。 【例题】2,6,54,1428,( 118098 )(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。 【例题】2,-4,-12,48,(240 )备考规律三:“平方数”数列及其变式(an=n2+d,其中d为常数或存在一定规律)(1)“平方数”的数列【例题】1,4,9,16,25,(36 )(2) 每一个平方数减去或加上一个常数 【例题】0,3,8,15,24,(35 ) 【例题变形】2,5,10,17,26,(37 )(3) 每一个平方数加去一个数值,而这个数值本身就是有

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 经济/贸易/财会 > 贸易

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号