初中数学 全等三角形经典题型50题(含答案)

上传人:M****1 文档编号:522768142 上传时间:2023-06-22 格式:DOC 页数:12 大小:198.50KB
返回 下载 相关 举报
初中数学 全等三角形经典题型50题(含答案)_第1页
第1页 / 共12页
初中数学 全等三角形经典题型50题(含答案)_第2页
第2页 / 共12页
初中数学 全等三角形经典题型50题(含答案)_第3页
第3页 / 共12页
初中数学 全等三角形经典题型50题(含答案)_第4页
第4页 / 共12页
初中数学 全等三角形经典题型50题(含答案)_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《初中数学 全等三角形经典题型50题(含答案)》由会员分享,可在线阅读,更多相关《初中数学 全等三角形经典题型50题(含答案)(12页珍藏版)》请在金锄头文库上搜索。

1、全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D是BC中点,AD是整数,求ADADBC延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD 即BE=AC=2 在三角形ABE中,AB-BEAEAB+BE 即:10-22AD10+2 4AD6 又AD是整数,则AD=5 2. 已知:D是AB中点,ACB=90,求证:DABC3. 已知:BC=DE,B=E,C=D,F是CD中点,求证:1=2ABCDEF21证明:连接BF和EF。因为 BC=ED,CF=DF,BCF=EDF。所以 三角形BCF全等于三角形EDF(边角边)。所以 BF=EF,CBF=DEF。连接BE。在三角形B

2、EF中,BF=EF。所以 EBF=BEF。又因为 ABC=AED。所以 ABE=AEB。所以 AB=AE。在三角形ABF和三角形AEF中,AB=AE,BF=EF,ABF=ABE+EBF=AEB+BEF=AEF。所以 三角形ABF和三角形AEF全等。所以 BAF=EAF (1=2)。 BACDF21E4. 已知:1=2,CD=DE,EF/AB,求证:EF=AC证明:过E点,作EG/AC,交AD延长线于G则DEG=DCA,DGE=2又CD=DEADCGDE(AAS)EG=ACEF/ABDFE=11=2DFE=DGEEF=EGEF=AC5. 已知:AD平分BAC,AC=AB+BD,求证:B=2CAC

3、DB证明:在AC上截取AE=AB,连接EDAD平分BACEAD=BAD又AE=AB,AD=ADAEDABD(SAS)AED=B,DE=DBAC=AB+BD AC=AE+CECE=DEC=EDCAED=C+EDC=2CB=2C6. 已知:AC平分BAD,CEAB,B+D=180,求证:AE=AD+BE证明: 在AE上取F,使EFEB,连接CF 因为CEAB 所以CEBCEF90 因为EBEF,CECE, 所以CEBCEF 所以BCFE 因为BD180,CFECFA180 所以DCFA 因为AC平分BAD 所以DACFAC 又因为ACAC 所以ADCAFC(SAS) 所以ADAF 所以AEAFFE

4、ADBE 12. 如图,四边形ABCD中,ABDC,BE、CE分别平分ABC、BCD,且点E在AD上。求证:BC=AB+DC。证明:在BC上截取BF=BA,连接EF.ABE=FBE,BE=BE,则ABEFBE(SAS),EFB=A;AB平行于CD,则:A+D=180;又EFB+EFC=180,则EFC=D;又FCE=DCE,CE=CE,故FCEDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD.DCBAFE13.已知:AB/ED,EAB=BDE,AF=CD,EF=BC,求证:F=CAB/ED,AE/BD推出AE=BD,又有AF=CD,EF=BC所以三角形AEF 全等于三角形DCB

5、,所以:C=F14. 已知:AB=CD,A=D,求证:B=CABCD证明:设线段AB,CD所在的直线交于E,(当ADBC时,E点是射线AB,DC的交点)。则:AED是等腰三角形。所以:AE=DE而AB=CD所以:BE=CE (等量加等量,或等量减等量)所以:BEC是等腰三角形所以:角B=角C.15. P是BAC平分线AD上一点,ACAB,求证:PC-PBAC-AB作B关于AD的对称点B,因为AD是角BAC的平分线,B在线段AC上(在AC中间,因为AB较短)因为PCPB+BC,PC-PBBC,而BC=AC-AB=AC-AB,所以PC-PBAC-ABPDACB16. 已知ABC=3C,1=2,BE

6、AE,求证:AC-AB=2BEBAC=180-(ABC+C=180-4C1=BAC/2=90-2CABE=90-1=2C延长BE交AC于F因为,1 =2,BEAE所以,ABF是等腰三角形AB=AF,BF=2BEFBC=ABC-ABE=3C-2C=CBF=CFAC-AB=AC-AF=CF=BF=2BE17. 已知,E是AB中点,AF=BD,BD=5,AC=7,求FAEDCBDC作AGBD交DE延长线于GAGE全等BDE AG=BD=5AGFCDF AF=AG=5所以DC=CF=218(5分)如图,在ABC中,BD=DC,1=2,求证:ADBC延长AD至H交BC于H;BD=DC;所以:DBC=角D

7、CB;1=2;DBC+1=角DCB+2;ABC=ACB;所以:AB=AC;三角形ABD全等于三角形ACD;BAD=CAD;AD是等腰三角形的顶角平分线所以:AD垂直BC19(5分)如图,OM平分POQ,MAOP,MBOQ,A、B为垂足,AB交OM于点N求证:OAB=OBA因为AOM与MOB都为直角三角形、共用OM,且MOA=MOB所以MA=MB所以MAB=MBA因为OAM=OBM=90度所以OAB=90-MAB OBA=90-MBA所以OAB=OBA20(5分)如图,已知ADBC,PAB的平分线与CBA的平分线相交于E,CE的连线交AP于D求证:AD+BC=AB证明:做BE的延长线,与AP相交

8、于F点,PA/BCPAB+CBA=180,又,AE,BE均为PAB和CBA的角平分线EAB+EBA=90AEB=90,EAB为直角三角形在三角形ABF中,AEBF,且AE为FAB的角平分线三角形FAB为等腰三角形,AB=AF,BE=EF在三角形DEF与三角形BEC中,EBC=DFE,且BE=EF,DEF=CEB,三角形DEF与三角形BEC为全等三角形,DF=BCAB=AF=AD+DF=AD+BC21(6分)如图,ABC中,AD是CAB的平分线,且AB=AC+CD,求证:C=2B证明:在AB上找点E,使AE=ACAE=AC,EAD=CAD,AD=ADADEADC。DE=CD,AED=CAB=AC

9、+CD,DE=CD=AB-AC=AB-AE=BEB=EDBC=B+EDB=2B22(6分)如图,E、F分别为线段AC上的两个动点,且DEAC于E,BFAC于F,若AB=CD,AF=CE,BD交AC于点M(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由 分析:通过证明两个直角三角形全等,即RtDECRtBFA以及垂线的性质得出四边形BEDF是平行四边形再根据平行四边形的性质得出结论解答:解:(1)连接BE,DFDEAC于E,BFAC于F,DEC=BFA=90,DEBF,在RtDEC和RtBFA中,AF=C

10、E,AB=CD,RtDECRtBFA,DE=BF四边形BEDF是平行四边形MB=MD,ME=MF;(2)连接BE,DFDEAC于E,BFAC于F,DEC=BFA=90,DEBF,在RtDEC和RtBFA中,AF=CE,AB=CD,RtDECRtBFA,DE=BF四边形BEDF是平行四边形MB=MD,ME=MF 23(7分)已知:如图,DCAB,且DC=AE,E为AB的中点,(1)求证:AEDEBC(2)观看图前,在不添辅助线的情况下,除EBC外,请再写出两个与AED的面积相等的三角形(直接写出结果,不要求证明):(1)DCAE,且DC=AE,所以四边形AECD是平行四边形。于是知AD=EC,且

11、EAD=BEC。由AE=BE,所以AEDEBC。(2)AEC、ACD、ECD都面积相等。24(7分)如图,ABC中,BAC=90度,AB=AC,BD是ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F求证:BD=2CE证明:延长BA、CE,两线相交于点F BECE BEF=BEC=90 在BEF和BEC中 FBE=CBE, BE=BE, BEF=BEC BEFBEC(ASA) EF=EC CF=2CE ABD+ADB=90,ACF+CDE=90 又ADB=CDE ABD=ACF 在ABD和ACF中 ABD=ACF, AB=AC, BAD=CAF=90 ABDACF(

12、ASA) BD=CF BD=2CE25、(10分)如图:DF=CE,AD=BC,D=C。求证:AEDBFC。26、(10分)如图:AE、BC交于点M,F点在AM上,BECF,BE=CF。求证:AM是ABC的中线。证明:BECFE=CFM,EBM=FCMBE=CFBEMCFMBM=CMAM是ABC的中线. 27、(10分)如图:在ABC中,BA=BC,D是AC的中点。求证:BDAC。三角形ABD和三角形BCD的三条边都相等,它们全等,所以角ADB和角CDB相等,它们的和是180度,所以都是90度,BD垂直AC 28、(10分)AB=AC,DB=DC,F是AD的延长线上的一点。求证:BF=CF证明

13、:在ABD与ACD中AB=ACBD=DCAD=ADABDACDADB=ADCBDF=FDC在BDF与FDC中BD=DCBDF=FDCDF=DFFBDFCDBF=FC29、(12分)如图:AB=CD,AE=DF,CE=FB。求证:AF=DE。因为AB=DCAE=DF,CE=FB CE+EF=EF+FB所以三角形ABE=三角形CDF因为 角DCB=角ABFAB=DC BF=CE三角形ABF=三角形CDE所以AF=DE30.公园里有一条“Z”字形道路ABCD,如图所示,其中ABCD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BECF,M在BC的中点,试说明三只石凳E,F,M恰好在一条直线上.证:AB平行CD(已知)B=C

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 外语文库 > 托福

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号