2021年中考数学压轴题专项训练:《反比例函数》

上传人:新** 文档编号:522350758 上传时间:2022-09-06 格式:DOC 页数:24 大小:634.50KB
返回 下载 相关 举报
2021年中考数学压轴题专项训练:《反比例函数》_第1页
第1页 / 共24页
2021年中考数学压轴题专项训练:《反比例函数》_第2页
第2页 / 共24页
2021年中考数学压轴题专项训练:《反比例函数》_第3页
第3页 / 共24页
2021年中考数学压轴题专项训练:《反比例函数》_第4页
第4页 / 共24页
2021年中考数学压轴题专项训练:《反比例函数》_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《2021年中考数学压轴题专项训练:《反比例函数》》由会员分享,可在线阅读,更多相关《2021年中考数学压轴题专项训练:《反比例函数》(24页珍藏版)》请在金锄头文库上搜索。

1、1如图,反比例函数y1和一次函数y2mx+n相交于点A(1,3),B(3,a),(1)求一次函数和反比例函数解析式;(2)连接OA,试问在x轴上是否存在点P,使得OAP为以OA为腰的等腰三角形,若存在,直接写出满足题意的点P的坐标;若不存在,说明理由解:(1)点A(1,3)在反比例函数y1的图象上,k133,反比例函数的解析式为y1,点B(3,a)在反比例函数y1的图象上,3a3,a1,B(3,1),点A(1,3),B(3,1)在一次函数y2mx+n的图象上,一次函数的解析式为y2x+2;(2)如图,OAP为以OA为腰的等腰三角形,当OAOP时,A(1,3),OA,OP,点P在x轴上,P(,0

2、)或(,0),当OAAP时,则点A是线段OP的垂直平分线上,A(1,3),P(2,0),即:在x轴上存在点P,使得OAP为以OA为腰的等腰三角形,此时,点P的坐标为(,0)或(2,0)或(,0)2在平面直角坐标系xOy中,函数y(x0)的图象G经过点A(3,2),直线l:ykx1(k0)与y轴交于点B,与图象G交于点C(1)求m的值;(2)横、纵坐标都是整数的点叫做整点记图象G在点A,C之间的部分与线段BA,BC围成的区域(不含边界)为W当直线l过点(2,0)时,直接写出区域W内的整点个数;若区域W内的整点不少于4个,结合函数图象,求k的取值范围解:(1)把A(3,2)代入y得m326,(2)

3、当直线l过点(2,0)时,直线解析式为yx1,解方程x1得x11(舍去),x21+,则C(1+,),而B(0,1),如图1所示,区域W内的整点有(3,1)一个;如图2,直线l在AB的下方时,直线l:ykx1过(6,1)时,16k1,解得k,当直线在OA的上方时,直线经过(1,4)时,4k1,解得k5,观察图象可知:当k或k5时,区域W内的整点不少于4个3如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,0),B(4,3),C(0,3)动点P从点O出发,以每秒个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒1个单位长度的速度沿边BC向终点C运动,设运

4、动的时间为t秒,PQ2y(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ时,求t的值;(3)连接OB交PQ于点D,若双曲线y经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由解:(1)过点P作PEBC于点E,如图1所示当运动时间为t秒时(0t4)时,点P的坐标为(t,0),点Q的坐标为(4t,3),PE3,EQ|4tt|4t|,PQ2PE2+EQ232+|4t|2t220t+25,y关于t的函数解析式及t的取值范围:;故答案为:(2)当时,整理,得5t216t+120,解得:t12,(3)经过点D的双曲线的k值不变连接OB,交PQ于点D,过点D作DFOA于点

5、F,如图2所示OC3,BC4,BQOP,BDQODP,OD3CBOA,DOFOBC在RtOBC中,点D的坐标为,经过点D的双曲线的k值为4如图,一次函数ykx+b的图象与反比例函数y的图象交于点A(3,m+8),B(n,6)两点(1)求一次函数与反比例函数的解析式;(2)求AOB的面积;(3)若P(x1,y1),Q(x2,y2)是该反比例函数图象上的两点,且当x1x2时,y1y2,指出点P、Q各位于哪个象限?解:(1)将A(3,m+8)代入反比例函数y得3(m+8)m,解得m6,点A的坐标为(3,2),反比例函数解析式为y,将点B(n,6)代入y得6n6,解得n1,点B的坐标为(1,6),将点

6、A(3,2),B(1,6)代入ykx+b得,解得,一次函数解析式为y2x4;(2)设AB与x轴相交于点C,如图,当2x40,解得x2,则点C的坐标为(2,0),SAOBSAOC+SBOC,22+26,2+6,8;(3)当x1x2时,y1y2,点P和点Q不在同一象限,P在第二象限,Q在第四象限5如图,平面直角坐标系中,一次函数yx1的图象与x轴,y轴分别交于点A,B,与反比例函数y的图象交于点C,D,CEx轴于点E,(1)求反比例函数的表达式与点D的坐标;(2)以CE为边作ECMN,点M在一次函数yx1的图象上,设点M的横坐标为a,当边MN与反比例函数y的图象有公共点时,求a的取值范围解:(1)

7、由题意A(1,0),B(0,1),OAOB1,OABCAE45AE3OA,AE3,ECx轴,AEC90,EACACE45,ECAE3,C(4,3),反比例函数y经过点C(4,3),k12,由,解得或,D(3,4)(2)如图,设M(a,a1)当点N在反比例函数的图象上时,N(a,),四边形ECMN是平行四边形,MNEC3,|a1|3,解得a6或2或1(舍弃),M(6,5)或(2,3),观察图象可知:当边MN与反比例函数y的图象有公共点时4a6或3a26如图,一次函数ykx+2的图象与y轴交于点A,正方形ABCD的顶点B在x轴上,点D在直线ykx+2上,且AOOB,反比例函数y(x0)经过点C(1

8、)求一次函数和反比例函数的解析式;(2)点P是x轴上一动点,当PCD的周长最小时,求出P点的坐标;(3)在(2)的条件下,以点C、D、P为顶点作平行四边形,直接写出第四个顶点M的坐标解:(1)设一次函数ykx+2的图象与x轴交于点E,连接BD,如图1所示当x0时,ykx+22,OA2四边形ABCD为正方形,OAOB,BAE90,OABOBA45,OAEOEA45,OE2,点E的坐标为(2,0)将E(2,0)代入ykx+2,得:2k+20,解得:k1,一次函数的解析式为yx+2OBDABD+OBA90,BDOAOEOB2,BD2OA4,点D的坐标为(2,4)四边形ABCD为正方形,点C的坐标为(

9、2+20,0+42),即(4,2)反比例函数y(x0)经过点C,n428,反比例函数解析式为y(2)作点D关于x轴的对称点D,连接CD交x轴于点P,此时PCD的周长取最小值,如图2所示点D的坐标为(2,4),点D的坐标为(2,4)设直线CD的解析式为yax+b(a0),将C(4,2),D(2,4)代入yax+b,得:,解得:,直线CD的解析式为y3x10当y0时,3x100,解得:x,当PCD的周长最小时,P点的坐标为(,0)(3)设点M的坐标为(x,y),分三种情况考虑,如图3所示当DP为对角线时,解得:,点M1的坐标为(,2);当CD为对角线时,解得:,点M2的坐标为(,6);当CP为对角

10、线时,解得:,点M3的坐标为(,2)综上所述:以点C、D、P为顶点作平行四边形,第四个顶点M的坐标为(,2),(,6)或(,2)7如图在平面直角坐标系中,一次函数y2x4的图象与反比例函数y的图象交于点A(1,n),B(m,2)(1)求反比例函数关系式及m的值;(2)若x轴正半轴上有一点M满足MAB的面积为16,求点M的坐标;(3)根据函数图象直接写出关于x的不等式在2x4的解集解:(1)一次函数y2x4的图象过点A(1,n),B(m,2)n24,22m4n6,m3,A(1,6)把A(1,6)代入y得,k6,反比例函数关系式为y;(2)设直线AB与x轴交于N点,则N(2,0),设M(m,0),

11、m0,SMABSBMN+SAMN,MAB的面积为16,|m+2|(2+6)16,解得m2或6(不合题意舍去),M(2,0);(3)由图象可知:不等式在2x4的解集是x3或0x18如图,在平面直角坐标系中,点A(3,5)与点C关于原点O对称,分别过点A、C作y轴的平行线,与反比例函数的图象交于点B、D,连结AD、BC,AD与x轴交于点E(2,0)(1)求直线AD对应的函数关系式;(2)求k的值;(3)直接写出阴影部分图形的面积之和解:(1)设直线AD对应的函数关系式为yax+b直线AD过点A(3,5),E(2,0), 解得直线AD的解析式为yx+2 (2)点A(3,5)关于原点O的对称点为点C,

12、点C的坐标为(3,5),CDy轴,设点D的坐标为(3,a),a3+21,点D的坐标为(3,1),反比例函数y的图象经过点D,k3(1)3;(3)如图:点A和点C关于原点对称,阴影部分的面积等于平行四边形CDGF的面积,S阴影43129如图,一次函数ykx+b的图象分别与反比例函数y的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OAOB(1)求函数ykx+b和y的表达式;(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MBMC,求此时点M的坐标解:(1)把点A(4,3)代入函数得:a3412,y,OA5,OAOB,OB5,点B的坐标为(0,5),把B(0,5),A(

13、4,3)代入ykx+b得:y2x5;(2)作MDy轴点M在一次函数y2x5上,设点M的坐标为(x,2x5)MBMC,CDBD,x2+(82x+5)2x2+(52x+5)28(2x5)2x5+5解得:x2x5,点M的坐标为(,)10如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y(k0)的第一象限内的图象上,OA3,OC5,动点P在x轴的上方,且满足SPAOS矩形OABC(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PA,求PO+PA的最小值;(3)若点Q是平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标解:(1)由题意,可知:点B的坐标为(3,5)点B在反比例

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > IT计算机/网络 > 架构

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号