《《自动控制原理》综述报告.doc》由会员分享,可在线阅读,更多相关《《自动控制原理》综述报告.doc(9页珍藏版)》请在金锄头文库上搜索。
1、 自动控制原理综述报告 摘要:在现代科学技术的众多领域中,自动控制技术起着越来越重要的的作用。所谓自动控制,是指在没有人直接参与的情况下,利用外加的设备或装置,使机器、设备或生产过程的某个工作状态或参数自动地按照预定的规律运行。例如,数控车床按照预定程序自动地工作;化学反应炉的温度或压力自动地维持恒定;雷达和计算机组成的导弹发射和制导系统,这一切都是以应用高水平的自动控制技术为前提的。 关键字:控制 响应 稳定 正文:25 一、控制系统的数学模型要求: 根据系统结构图应用结构图的等效变换和简化或者应用信号流图与梅森公式求传递函数(方法不同,但同一系统两者结果必须相同)一、控制系统3种模型,即时
2、域模型-微分方程;复域模型传递函数;频域模型频率特性。其中重点为传递函数。线性定常系统的传递函数是在零初始条件下,系统输出量的拉氏变换式与输入量的拉氏变换式之比二、结构图的等效变换和简化1等效原则:变换前后变量关系保持等效,简化的前后要保持一致2结构图基本连接方式只有串联、并联和反馈连接三种。如果结构图彼此交叉,看不出3种基本连接方式,就应用移出引出点或比较点先解套,再画简。其中:三. 应用信号流图与梅森公式求传递函数梅森公式: 式中,P 总增益;n 前向通道总数;Pk 第k条前向通道增益;系统特征式,即Li 回路增益;La 所有回路增益之和;LbLc 所有两个不接触回路增益乘积之和;LdLe
3、Lf 所有三个不接触回路增益乘积之和;k第k条前向通道的余因子式,在计算式中删除与第k条前向通道接触的回路。 二、线性系统的时域分析 要求:1) 会分析系统的时域响应,包括动态性能指标;2) 会用劳斯判据判定系统稳定性并求使得系统稳定的参数条件;3)会根据给出的系统结构图,求出系统稳态误差,并减小或消除之。一、时域分析方法和思路:已知系统输入和系统模型,求时域响应。二、线性系统稳定的充要条件是闭环特征根均需具有负实部或者说的极点都在在s平面右半部分。-系统稳定性是系统本来的固有特性,与外输入信号无关。1 只有当系统的特征根全部具有负实部时,系统达到稳定。2 如果特征根中有一个或一个以上具有正实
4、部,则这表明系统不稳定;3 如果特征根中具有一个或一个以上的零实部根,而其余的特征根均具有负实部,则脉冲响应函数趋于常数,或者趋于等幅正弦(余弦)振荡,称为临界稳定。 三、二阶系统单位阶跃响应及其欠阻尼情况下指标计算1熟悉二阶系统单位阶跃响应的3个对应关系,即:不同阻尼比类型不同单位阶跃的时间响应波形图-不同系统稳定性2二阶系统欠阻尼单位阶跃响应的指标计算:欠阻尼二阶系统上升时间、峰值时间、调节时间、超调量计算 ,其中,阻尼角,阻尼振荡频率 四、附加闭环负实零点对系统影响具有闭环负实零点时的二阶系统分析对系统的作用表现为:1. 仅在过渡过程开始阶段有较大影响; 2. 附加合适的闭环负实零点可使
5、系统响应速度加快,但系统的超调量略有增大;3. 负实零点越接近虚轴,作用越强。五、高阶系统的时域分析-利用闭环主导极点降阶如果在系统所有的闭环极点中,距离虚轴最近的闭环极点周围没有闭环零点,而其他闭环极点又远离虚轴,且满足式中,为主导极点; 为非主导极点。则距离虚轴最近的闭环极点所对应的响应分量随着时间的推移衰减得最慢,从而在系统的响应过程中起主导作用。一般闭环主导极点为共轭闭环主导极点或者一个实闭环主导极点。六、利用劳斯判据判定系统稳定性并求使得系统稳定的参数条件。1根据特征方程:,则线性系统稳定的充要条件是劳斯表首列元素均大于零;首列系数符号改变次数与分布在s平面右半部的极点个数相同。2劳
6、斯表特殊情况时,系统临界稳定或者不稳定。3如果系统稳定,则特征方程系数同号且不缺项;4利用劳斯判据判定系统稳定性七、稳态误差以及减小或者消除稳态误差1. 稳态误差定义: 其中,误差传递函数,2终值定理法求稳态误差如果有理函数除了在原点有唯一的极点外,在s右半平面及虚轴解析,即的极点均位于s左半平面(包括坐标原点),则根据终值定理可求稳态误差。3系统型别-定义为开环传递函数在s平面的积分环节个数。其中,K:系统的开环增益(放大倍数),为型别。4基于静态误差系数的稳态误差-当-输入为阶跃、速度、加速度信号及其组合信号时,静态位置误差系数 ,静态速度误差系数 , 静态加速度误差系数 ,5减小或者消除
7、稳态误差的方法:a. 增大开环放大倍数(开环增益)(在保证系统稳定的前提下)b. 提高系统的型别(在保证系统稳定的前提下)。c. 采用复合控制方法(要知道其原理):包括输入补偿和扰动补偿两种,都可以消除稳态误差而不影响系统稳定性。 三、线性系统的根轨迹法线性系统的根轨迹法要求: 根据给出系统结构图-求开环传递函数-得出根轨迹方程-化成标准形式判断根轨迹类型-绘制根轨迹-完成对稳定性、动态性能和稳态性能的分析。根轨迹定义:开环系统某一参数从 时,闭环系统特征方程式的根(闭环极点)在s平面变化的轨迹。二、根轨迹法中开环传递函数的标准形式零极点形式,称为开环系统根轨迹增益 三、 根轨迹方程从哪里来四
8、、 四、根轨迹绘制的基本规则(180度和0度)1:根轨迹的起点和终点。起点,(有复极点有起始角),终点:。2:根轨迹的分支数。根轨迹的分支数=开环极点数。3:根轨迹的对称性和连续性:根轨迹连续且对称于实轴。4:根轨迹的渐近线(与实轴的交点和夹角)。,与实轴的夹角负实轴。如图: 5:根轨迹在实轴上的分布:是根轨迹。6:根轨迹的起始角和终止角(只有开环复极点,因此只有出射角) , 利用对称性,则7:根轨迹与实轴的交点(根轨迹在实轴上的分离点与分离角),则因此,所以求出(舍)8:根轨迹与虚轴的交点。若将代入特征方程 所以令实部,虚部分别等于0得: 与虚轴没有交点分析系统的稳定性:都稳定。五、根据根轨
9、迹分析系统性能-根据根轨迹判断稳定性,求k值范围,超调量,系统型别等。 四、线性系统的频域分析法要求:1) 绘制出频率响应曲线开环幅相曲线或开环对数渐近幅频特性曲线-补线-应用奈奎斯特稳定判据判断系统稳定性及系统稳定的参数范围。2)利用开环对数幅频渐近特性确定最小相位系统的传递函数一、频域分析法中开环传递函数的标准形式为时间常数形式二、最小相位系统开环幅相曲线的绘制1)极坐标图的起点: ,2)极坐标图的终点:当时,。3)与实轴交点 -4)从起点到终点的相角及与实轴交点位置共同决定曲线所在象限。K 值变化仅改变幅相曲线的幅值及与实轴交点的位置,不改变其形状。三、最小相位系统开环对数渐近幅频特性曲
10、线(Bode图)的绘制将开环传递函数分解成典型环节乘积的形式;将各典型环节的转折频率由低到高从左向右依次标注在横轴上将(最小转折频率)的频率范围设为低频段。(3)在低频段,开环对数渐近幅频特性 可见,其直线斜率为20。但是要画出这低频段渐近特性直线,还必须确定该直线或其延长线上一点: (4)从低频以后,沿频率增大的方向,每遇到一个转折频率就改变直线斜率,变化规律取决于该转折频率对应的典型环节种类。如果典型环节为惯性环节或振荡环节,在交接频率之后,斜率要减小20dB/dec或40 db/dec;如果典型环节为一阶微分环节或二阶微分环节,在交接频率之后,斜率要增加20db/dec或40 db/de
11、c。即一阶20dB/dec的整数倍,二阶40dB/dec的整数倍。(5)绘出用渐近线表示的对数幅频特性以后,如果需要,可以进行修正。通常只需修正转折频率处幅值就可以了。对于一阶项,在转折频率处的修正值为3dB;对于二阶项,在转折频率处的修正值可由公式求出。四、利用开环对数幅频渐近特性确定最小相位系统的传递函数1)确定系统积分或微分环节的个数2)确定系统其他环节(根据转折频率前后斜率变化判断对应的环节类型,利用转折频率倒数确定时间常数)图中每次遇到一个交接频率改变一次分段直线的斜率。且斜率的变化对应这环节的类型。在交接频率之后,斜率要减小20db/dec或40 db/de为惯性环节或振荡环节;斜
12、率要增加20db/dec或40 db/dec对应一阶微分环节或二阶微分环节。参数K的确定:已知低频段或其延长线上一点确定)。特别指出,半对数坐标系中求斜率: 五.频率域稳定判据1奈奎斯特稳定判据:闭环系统稳定的充分必要条件是闭合曲线不穿越(-1,j0)点,且逆时针围绕点 P 次。记为:其中:N为半闭合曲线GH穿越点左侧的的次数和。相角增大为正穿越GH :当:通常,只需绘制的半条GH曲线,即开环幅相曲线。当:当G(s)H(s)有虚轴上的极点时,绘制的半条GH曲线外,半闭合曲线还要从出发,以无穷大为半径,逆时针转过/2 后的虚线圆弧, 箭头指向 。箭头指向增大的方向 。2对数频率稳定判据:极坐标图
13、 伯德图(-1,j0)点 0dB线和-180相角线 (-1, -)段 0dB线以上区域结论:Nyquist曲线自上而下(自下而上)穿越(-1,j0)点左侧负实轴相当于Bode图中当L()0dB时相频特性曲线自下而上(自上而下)穿越-180线。五、稳定裕度-后面校正设计用相角裕度: 幅值裕度:六、开环对数幅频特性的三频段理论-后面校正设计用1低频段决定了系统稳态精度。低频段通常是指的开环对数渐近曲线在第一个转折频率以前的区段,这一段的特性完全由积分环节v和开环增益K决定。2中频段是指穿过0dB线(即附近)的频段,其斜率及宽度(中频段长度)集中反映了动态响应中的平稳性和快速性。一般的,中频段在附近
14、以斜率为下降的直线。3 高频段指曲线在中频段以后的区段,反映出系统的低通滤波特性,形成了系统对高频干扰信号的抑制能力。 五 线性系统的校正方法要求: 1)在三频段理论基础上,能够熟练应用基于频率法的串联超前、滞后和滞后超前校正设计需要的系统。 2)至于根轨迹校正,要求掌握其基本原理(与基于频率法的串联超前、滞后和滞后超前校正可以相对应),但是由于计算起来太繁杂,一般不采用。一、基本控制规律 P、 PI(滞后,改善稳态性能)、PD(超前,改善动态性能)、 PID 的特点二、掌握基于频率法的串联超前、滞后和滞后超前校正原理和特点1原理:串联滞后校正: 保证动态性能不变情况下,提高系统稳态性能; 利用滞后校正装置高频幅值衰减特性-低频区; 串联超前校正