亳州激光雷达设计项目实施方案模板

上传人:人*** 文档编号:511372534 上传时间:2023-06-02 格式:DOCX 页数:134 大小:126.97KB
返回 下载 相关 举报
亳州激光雷达设计项目实施方案模板_第1页
第1页 / 共134页
亳州激光雷达设计项目实施方案模板_第2页
第2页 / 共134页
亳州激光雷达设计项目实施方案模板_第3页
第3页 / 共134页
亳州激光雷达设计项目实施方案模板_第4页
第4页 / 共134页
亳州激光雷达设计项目实施方案模板_第5页
第5页 / 共134页
点击查看更多>>
资源描述

《亳州激光雷达设计项目实施方案模板》由会员分享,可在线阅读,更多相关《亳州激光雷达设计项目实施方案模板(134页珍藏版)》请在金锄头文库上搜索。

1、泓域咨询/亳州激光雷达设计项目实施方案亳州激光雷达设计项目实施方案xx投资管理公司目录第一章 行业发展分析8一、 多传感器融合趋势8二、 车载激光雷达产业格局9第二章 项目背景及必要性12一、 激光雷达技术路径12二、 激光雷达市场空间16三、 激发各类人才创新活力16四、 完善科技创新体制机制19五、 项目实施的必要性20第三章 项目概况22一、 项目概述22二、 项目提出的理由23三、 项目总投资及资金构成25四、 资金筹措方案25五、 项目预期经济效益规划目标26六、 项目建设进度规划26七、 环境影响26八、 报告编制依据和原则27九、 研究范围28十、 研究结论28十一、 主要经济指

2、标一览表28主要经济指标一览表28第四章 建设方案与产品规划31一、 建设规模及主要建设内容31二、 产品规划方案及生产纲领31产品规划方案一览表31第五章 建筑工程可行性分析34一、 项目工程设计总体要求34二、 建设方案35三、 建筑工程建设指标38建筑工程投资一览表39第六章 发展规划分析40一、 公司发展规划40二、 保障措施46第七章 法人治理结构49一、 股东权利及义务49二、 董事53三、 高级管理人员57四、 监事60第八章 项目节能方案62一、 项目节能概述62二、 能源消费种类和数量分析63能耗分析一览表63三、 项目节能措施64四、 节能综合评价64第九章 项目环境保护6

3、6一、 编制依据66二、 环境影响合理性分析66三、 建设期大气环境影响分析68四、 建设期水环境影响分析69五、 建设期固体废弃物环境影响分析69六、 建设期声环境影响分析70七、 环境管理分析71八、 结论及建议72第十章 工艺技术及设备选型74一、 企业技术研发分析74二、 项目技术工艺分析77三、 质量管理78四、 设备选型方案79主要设备购置一览表80第十一章 原辅材料分析81一、 项目建设期原辅材料供应情况81二、 项目运营期原辅材料供应及质量管理81第十二章 劳动安全评价82一、 编制依据82二、 防范措施83三、 预期效果评价89第十三章 投资计划方案90一、 投资估算的依据和

4、说明90二、 建设投资估算91建设投资估算表93三、 建设期利息93建设期利息估算表93四、 流动资金94流动资金估算表95五、 总投资96总投资及构成一览表96六、 资金筹措与投资计划97项目投资计划与资金筹措一览表97第十四章 项目经济效益分析99一、 基本假设及基础参数选取99二、 经济评价财务测算99营业收入、税金及附加和增值税估算表99综合总成本费用估算表101利润及利润分配表103三、 项目盈利能力分析103项目投资现金流量表105四、 财务生存能力分析106五、 偿债能力分析106借款还本付息计划表108六、 经济评价结论108第十五章 项目风险评估109一、 项目风险分析109

5、二、 项目风险对策111第十六章 招投标方案114一、 项目招标依据114二、 项目招标范围114三、 招标要求115四、 招标组织方式115五、 招标信息发布117第十七章 总结说明118第十八章 补充表格121营业收入、税金及附加和增值税估算表121综合总成本费用估算表121固定资产折旧费估算表122无形资产和其他资产摊销估算表123利润及利润分配表123项目投资现金流量表124借款还本付息计划表126建设投资估算表126建设投资估算表127建设期利息估算表127固定资产投资估算表128流动资金估算表129总投资及构成一览表130项目投资计划与资金筹措一览表131第一章 行业发展分析一、

6、多传感器融合趋势智能驾驶需要传感器满足成本、可靠性、距离、精度等不同维度的需求,由于各类传感器互有优劣,难以替代,因此多传感器融合已成为大势所趋。要实现高级别的智能驾驶,仅靠不同传感器之间简单的堆叠和并列是远远不够的,通过主次分明、有机统一的传感器融合方案,激发核心传感器之间的“化学反应”,实现更优异的感知表现,并使辅助传感器对系统整体能力做到恰到好处的补充,才是打造智能驾驶车辆感知系统的必要之举。目前对于智能驾驶的感知层融合配置,市场上主要有两大技术流派:一类是“摄像头主导”方案,感知系统由摄像头主导+毫米波雷达组成,轻感知重算法,以特斯拉为典型代表;另一类是“激光雷达主导”方案,感知系统由

7、激光雷达主导+摄像头+毫米波雷达组成,重感知轻算法,以Waymo、百度等无人驾驶型企业和蔚来、小鹏、理想等造车新势力为典型代表。“摄像头主导”方案依赖人为干预,在L2以及下阶段占据优势。“摄像头”方案采用“摄像头”+“算法”完全模拟“人眼”+“人脑”的纯视觉驾驶行为,依赖大量的数据训练来提高感知的准确度,在技术成熟度、成本上具备优势,但在精度、可靠性上都有局限,尤其在应对汽车高速行驶等长尾场景时,摄像头+毫米波的组合对于非标准静态的物体也有一定的识别障碍,需要驾驶员的大量干预。因此,在L2及以下的智能驾驶阶段,“摄像头主导”方案占据优势。现阶段特斯拉已凭借先发销量优势,通过数据积累上的高墙垒筑

8、,在L2阶段便与其他新势力拉开了差距,独占绝对优势。“激光雷达主导”方案增强感知系统冗余,助力L3+智能驾驶的实现。“激光雷达”方案重感知重算法,精度高、抗干扰能力强,配合高精度地图更能实现精准定位。随着智能驾驶向L3进阶,驾驶员的参与度会大幅度减少,单纯的“眼见为实”已不再满足车辆智能驾驶的需求。激光雷达具备高精度、高可靠性,配合摄像头和毫米波雷达,能增强系统的可靠性、冗余性,有望在L3+阶段成为汽车传感器中不可或缺的一部分,并且借助差异化竞争优势,也有望成为除特斯拉外的造车新势力实现弯道超车的有效手段。二、 车载激光雷达产业格局产业链上下游共振,生态模式逐步成熟。车载激光雷达上游为光学和电

9、子元器件,中游为激光雷达整机厂,下游主要由整车厂(ADAS车企、Robotaxi/Robobus自动出行服务商)和Tier1厂商组成。上游光电器件厂商的产品性能和成本不断改进,中游激光雷达主机厂技术路径快速迭代,共同推进激光雷达在车载市场的蓬勃发展。激光雷达上游环节较多,按光电器件可分为扫描部件、收发部件(激光器、探测器)、光学部件(准直镜、分束器、扩散片、透镜、滤光片)和信息处理部件(模拟芯片、FPGA),决定着激光雷达的性能、成本与可靠性。尽管当前整机厂商的激光雷达的路线方案各有不同,但在光电器件的选择上具备共性,因此能够与主流整机厂定点合作的上游光电器件厂商具备较高的成长确定性。收发部件

10、:国内已有布局,国产化替代可期。激光器和探测器是激光雷达重要收发部件,常年由海外大厂主导,近年来国内厂商开始布局。发射端激光器代表企业包括国外的OSRAM(欧司朗)、AMS(艾迈斯半导体)、Lumentum(鲁门特姆)等,其在消费电子市场耕耘已久,并迅速延伸至新兴的汽车领域并占据优势。国内企业主要有炬光科技(已上市)、长光华芯(已上市)、瑞波光电、纵慧光电等,相关产品性能已逐步接近海外水平,有望加速国产替代。Yole数据显示,2019年全球VCSEL市场Lumentum占据49%的市场份额,II-VI(贰陆集团)、AMS分别以14%、11%的份额紧随其后,国内企业纵慧光电达到2%的占比。接收端

11、探测器主要由Hamamatsu(滨松)、ONSemiconductor(安森美)、Sony(索尼)等厂商布局并主导市场。国内供应商灵明光子(未上市)、宇称电子(未上市)、芯辉科技(未上市)已前瞻性地布局SPAD、SiPM等新技术。QYResearch数据显示,2021年全球Si-APD市场规模约77.66百万美元,预计2028年将达到116.99百万美元,复合增长率为6.45%。其中,中国市场份额为5.06%,日本为35.26%,First-sensor、滨淞和KyosemiCorporation(日本京都半导体)前三大厂商占有全球62.10%的市场份额。2021年度激光雷达业务收入超千万元;

12、福晶科技配合华为开发激光雷达光学元件,目前实现小批量出货。光学部件方面,激光雷达公司一般为自主研发设计,然后选择行业内的加工公司完成生产和加工工序,国内供应链的技术水平已经完全达到或超越国外供应链的水准,同时具备贴近下游市场的优势,在成本方面也更具竞争力,已经可以完全替代国外供应链和满足产品加工的需求,有望借激光雷达之东风率先收益。第二章 项目背景及必要性一、 激光雷达技术路径激光雷达目前尚处技术驱动阶段,技术路线百花齐放,需要随着产品的量产持续验证。按照激光雷达的构成和原理,测距原理、激光波长、发射装置、接收装置、扫描方式是激光雷达的五大技术维度,不同的维度衍生出不同的技术发展方向,下游主机

13、厂依照这五个维度设计组合形成特色技术方案,不同的技术路径又导致激光雷达成品在测距、测速、测角、精度、范围、功耗、集成度等性能上的差异,继而决定了各主机厂的产品能力和远期潜力。激光雷达主要有两种测距方法,一种是基于时间的测量方法,通过计算发射激光脉冲和接收激光脉冲所需的时间得到目标距离,称作飞行时间法(TOF,time-of-flight);另一种是基于频率的测量方法,将发射的激光进行调制后测量往返光波的频率差与相位差测得目标距离,称作连续波调频相干检测法(FMCW,frequency-modulatedcontinuouswave),结合多普勒效应还可以同时计算出物体每个像素点的速度数据。To

14、F工艺成熟、成本合理,是目前市场车载中长距激光雷达的主流方案;FMCW具有可直接测量速度信息以及抗干扰(包括环境光和其他激光雷达)的优势,未来随着FMCW激光雷达整机和上游产业链的成熟,ToF和FMCW激光雷达将在市场上并存。从光源上看,市场上激光雷达最常用的波长方案是905nm和1550nm。激光是一种单一颜色、单一波长的光,根据发生器的不同可以产生紫外线(10-400nm)到可见光(390-780nm)到红外线(760-1000000nm)波段内的不同激光。车载激光雷达波长的选择主要考量三个因素:人眼安全:为避免可见光对人眼的伤害,激光雷达选用的激光波长一般不低于850nm,905nm激光

15、工作于近红外(NIR)波段,接近可见光360nm-750nm频率,可穿透角膜和晶状体,聚焦在视网膜上,所以发射功率需先在在对人无害的范围内。而1550nm激光工作于中红外波段(SWIR),主要被角膜上的液体吸收,无法在视网膜上聚焦成点,相对更加安全。功率上限:905nm激光对应的器件功率受到限制,进而影响了激光雷达的探测距离和雨雾抗干扰能力;1550nm激光更加安全,对应的功率上限相应提高,其探测距离和抗干扰能力也显著提高。适配器件:波长与发光材料物理特性有关,905nm激光器多用砷化镓GaAs作为发光材料,配备半导体激光器即可,1550nm多用磷化铟InP作为发光材料,其工作波段需配备体积较大的光纤激光器。此外,特定的波长需要特定材料制成的探测器吸收,905nm波长的激光可被硅基材料吸收,1550nm波长的激光需要铟镓砷InGa

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 国内外标准规范

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号