数值分析第五版习题总结

上传人:人*** 文档编号:511310621 上传时间:2023-06-21 格式:DOC 页数:37 大小:1.60MB
返回 下载 相关 举报
数值分析第五版习题总结_第1页
第1页 / 共37页
数值分析第五版习题总结_第2页
第2页 / 共37页
数值分析第五版习题总结_第3页
第3页 / 共37页
数值分析第五版习题总结_第4页
第4页 / 共37页
数值分析第五版习题总结_第5页
第5页 / 共37页
点击查看更多>>
资源描述

《数值分析第五版习题总结》由会员分享,可在线阅读,更多相关《数值分析第五版习题总结(37页珍藏版)》请在金锄头文库上搜索。

1、第一章 绪论3下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:, , ,解:是五位有效数字;是二位有效数字;是四位有效数字;是五位有效数字;错 是二位有效数字。 4利用公式(2.3)求下列各近似值的误差限:(1) ,(2) ,(3) .其中均为第3题所给的数。解:6设,按递推公式 (n=1,2,)计算到。若取(5位有效数字),试问计算将有多大误差?解: 依次代入后,有即,若取, 的误差限为。8当N充分大时,怎样求?解 设。则11序列满足递推关系 (n=1,2,),若(三位有效数字),计算到时误差有多大?这个计算过程稳定吗?解:又 又 计算到时误

2、差为,这个计算过程不稳定。12计算,取,利用下列等式计算,哪一个得到的结果最好?, , , 。解:设,若,则。若通过计算y值,则若通过计算y值,则若通过计算y值,则通过计算后得到的结果最好。第二章 插值法4设为互异节点,求证:(1) (2) 证明(1) 令若插值节点为,则函数的次插值多项式为。插值余项为又 由上题结论可知得证。5设且求证:解:令,以此为插值节点,则线性插值多项式为 =插值余项为6在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函数表的步长h应取多少?解:若插值节点为和,则分段二次插值多项式的插值余项为设步长为h,即若截断误差不超过,则8如果是m次多项

3、式,记,证明的k阶差分是次多项式,并且(为正整数)。解:函数的展式为其中又是次数为的多项式 为阶多项式为阶多项式依此过程递推,得是次多项式是常数当为正整数时,12若有个不同实根,证明:证明:有个不同实根且令则而 令则又得证。15证明两点三次埃尔米特插值余项是 解:若,且插值多项式满足条件插值余项为由插值条件可知且可写成其中是关于的待定函数,现把看成上的一个固定点,作函数根据余项性质,有由罗尔定理可知,存在和,使即在上有四个互异零点。根据罗尔定理,在的两个零点间至少有一个零点,故在内至少有三个互异零点,依此类推,在内至少有一个零点。记为使又其中依赖于分段三次埃尔米特插值时,若节点为,设步长为,即

4、在小区间上 17设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与值,并估计误差。解:若则步长在小区间上,分段线性插值函数为 各节点间中点处的与的值为当时,当时,当时,当时,当时,误差又令得的驻点为和19求在上分段埃尔米特插值,并估计误差。解:在区间上,令函数在区间上的分段埃尔米特插值函数为误差为又20给定数据表如下:Xj0.250.300.390.450.53Yj0.50000.54770.62450.67080.7280试求三次样条插值,并满足条件:解:由此得矩阵形式的方程组为 2 1 M0 2 M1 2 M2 2 M3 1 2 M4 求解此方程组得三次样条表达式为将代入得由

5、此得矩阵开工的方程组为求解此方程组,得又三次样条表达式为将代入得第三章 函数逼近与曲线拟合2.当时,求证证明:若,则 4。计算下列函数关于的与:m与n为正整数,解:若,则在内单调递增若,则若m与n为正整数当时,当时,在内单调递减当时,在内单调递减。若当时,在内单调递减。6.对,定义问它们是否构成内积。解:令(C为常数,且)则而这与当且仅当时,矛盾不能构成上的内积。若,则,则若,则,且即当且仅当时,.故可以构成上的内积。8。对权函数,区间,试求首项系数为1的正交多项式解:若,则区间上内积为定义,则其中12。选取常数,使达到极小,又问这个解是否唯一?解:令则在上为奇函数又的最高次项系数为1,且为3

6、次多项式。与0的偏差最小。从而有14。求在上的最佳一次逼近多项式。解:于是得的最佳一次逼近多项式为15。求在区间上的三次最佳一致逼近多项式。解:令,则且令,则若为区间上的最佳三次逼近多项式应满足当时,多项式与零偏差最小,故进而,的三次最佳一致逼近多项式为,则的三次最佳一致逼近多项式为18。,在上按勒让德多项式展开求三次最佳平方逼近多项式。解:按勒让德多项式展开则从而的三次最佳平方逼近多项式为21。在某佛堂反应中,由实验得分解物浓度与时间关系如下:时间0 5 10 15 20 25 30 35 40 45 50 55浓度0 1.27 2.16 2.86 3.44 3.87 4.15 4.37 4

7、.51 4.58 4.62 4.64用最小二乘法求。解:观察所给数据的特点,采用方程两边同时取对数,则取则则法方程组为从而解得因此23,用辗转相除法将化为连分式。解25。求在处的阶帕德逼近。解:由在处的泰勒展开为得从而即解得又则故 第四章 数值积分与数值微分1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:解:求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。(1)若令,则令,则令,则从而解得令,则故成立。令,则故此时,故具有3次代数精度。(2)若令,

8、则令,则令,则从而解得令,则故成立。令,则故此时,因此,具有3次代数精度。(3)若令,则令,则令,则从而解得或令,则故不成立。因此,原求积公式具有2次代数精度。(4)若令,则令,则令,则故有令,则令,则故此时,因此,具有3次代数精度。4。用辛普森公式求积分并估计误差。解:辛普森公式为此时,从而有误差为5。推导下列三种矩形求积公式:证明:两边同时在上积分,得即两边同时在上积分,得即两连边同时在上积分,得即6。若用复化梯形公式计算积分,问区间应人多少等分才能使截断误差不超过?若改用复化辛普森公式,要达到同样精度区间应分多少等分?解:采用复化梯形公式时,余项为又故若,则当对区间进行等分时,故有因此,

9、将区间213等分时可以满足误差要求采用复化辛普森公式时,余项为又若,则当对区间进行等分时故有因此,将区间8等分时可以满足误差要求。7。如果,证明用梯形公式计算积分所得结果比准确值大,并说明其几何意义。解:采用梯形公式计算积分时,余项为又且又即计算值比准确值大。其几何意义为,为下凸函数,梯形面积大于曲边梯形面积。8。用龙贝格求积方法计算下列积分,使误差不超过.解:00.771743310.72806990.713512120.71698280.71328700.713272030.71420020.71327260.71327170.7132717因此03.45131318.628283-4.4

10、46923因此014.2302495111.171369910.1517434210.443796910.201272510.2045744310.266367210.207224010.207620710.2076691410.222270210.207571210.207594310.207593910.2075936510.211260710.207590910.207592210.207592210.207592210.2075922因此13。证明等式 试依据的值,用外推算法求的近似值。解 若又此函数的泰勒展式为当时, 当时, 当时, 由外推法可得n32.59807663.0000003.13397593.1058293.1411053.141580故14。用下列方法计算积分,并比较结果。(1)龙贝格方法;(2)三点及五点高斯公式;(3)将积分区间分为四等分,用复化两点高斯公式。解(1)采用龙贝格方法可得k01.33333311.1666671.09925921.1166671.1000001.09925931.1032111.0987261.0986411.09861341.0997681.0986201.0986131.0986131.098613故有(2)采用高斯公式时此时令则利用三点高斯公式,则利用五点

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 幼儿/小学教育 > 小学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号