光伏电站工程防雷接地专项施工方案

上传人:人*** 文档编号:510587617 上传时间:2022-10-14 格式:DOCX 页数:18 大小:40.44KB
返回 下载 相关 举报
光伏电站工程防雷接地专项施工方案_第1页
第1页 / 共18页
光伏电站工程防雷接地专项施工方案_第2页
第2页 / 共18页
光伏电站工程防雷接地专项施工方案_第3页
第3页 / 共18页
光伏电站工程防雷接地专项施工方案_第4页
第4页 / 共18页
光伏电站工程防雷接地专项施工方案_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《光伏电站工程防雷接地专项施工方案》由会员分享,可在线阅读,更多相关《光伏电站工程防雷接地专项施工方案(18页珍藏版)》请在金锄头文库上搜索。

1、第一章项目概况 1第二章技术标准和规范 1第三章防雷概述 1第四章雷电对电气设备的影响 2直击雷 2雷电波侵入 2电磁感应 2地电位反击 3开关过电压 3第五章项目内容及要求 3光伏方阵及箱变接防雷接地工程 3光伏方阵接地系统 3接地材料要求 4第六章设计方案 4防雷类别及电子信息系统雷电防护等级 4光伏方阵及箱变防雷接地设计方案 4防直击雷设计 4防闪电涌设计 4接地等电位连接 4光伏发电系统的相关设备浪涌过电压保护示意图 4光伏场区防直击雷方案 4光伏场区防直击雷措施 5光伏场区防雷接地方案 6光伏场区防雷接地具体措施 7光伏场区环形闭合地网的接地电阻计算 9第七章施工方法 10第八章工期

2、及资源配置 13第一章项目概况本项目位于光伏电站位于,地形较开阔,坡度在5。25不等之间,海拔高程伏电站场址所在区域是云南省太阳能资源可开发区域之一,年太阳总辐射为m2a,年日照时数为,根据太阳能资源评估方法(QX/T 89 2008)判定其太阳能资源属于很丰富 地区,资源具备较好的开发条件。太阳总辐射值最高月与最低月之比为,年内月太阳总辐射值变化基本平稳,工程开发利用价值较高,有利于太阳能能源的稳定输出。场址所在 区域降雪天气很少,无沙尘天气,气温年内变化不大,目标区域内风速不大,气候条件有 利于太阳能资源开发。全站光伏方阵电能经逆变升压至 35kV后送入110kV升压站,汇集并网光伏电站电

3、力 后,以1回110kV线路接入220kV沙林变电站。第二章技术标准和规范下列标准所包含的条文,通过在本技术规范中引用而构成本规范的条文。1、GB/T19001-2000质量管理体系2、 GB/接地系统的土壤电阻率、接地阻抗和地面电位测量导则第1部分:常规测 量3、GB/T21431-2008建筑物防雷装置检测技术规范4、GB/T24001-2004环境管理体系5、GB/T28001-2001职业健康安全管理体系规范6、GB50057-2010建筑物防雷设计规范7、GB50150-2006电气装置安装工程电气设备 交接试验标准8、GB50169-2006电气装置安装工程接地装置施工及验收规范9

4、、GB50300-2001建筑工程施工验收统一标准10、DL/T620-1997交流电气装置的过电压保护和绝缘配合11、DL/T621-1997交流电气装置的接地12、DL/T475-2006接地装置特性参数测量导则13、JB617-2004接地装置安装工程施工工艺标准14、GB/21698-2008复合接地体技术条件15、国家电网公司十八项电网重大反事故措施16、国家电力公司防止电力生产重大事故的二十五项重点要求第三章防雷概述雷电是一种常见且非常壮观的自然现象,它具有极大的破坏力,对人类的生命、财产 安全造成巨大的危害,1987年联合国确定的“国际减灾十年中雷电为对人类危害最大的十 种灾害之

5、一。自从人类进入到电气化时代以后,雷电的破坏由主要以直击雷击毁人和物为 主。发展到以通过金属线与雷电波破坏电气设备为主。随着近年来电子技术的飞速发展, 人类对电气设备尤其是高精密电子设备的依赖越来越严重。而电子元器件的微型化、集成 化程度越来越高,各类电子设备的耐过电压能力下降,遭雷电和过电压破坏的比例呈不断 上升的趋势,对设备与网络的安全运行造成严重威胁。据统计,全世界每年因雷害造成的 损失高达几十亿美元以上。因此如何对高精密电子实施切实有效的防雷保护,保证系统安 全可靠运行,成为当前一项紧迫的重要课题。云南是我国雷电多发区,滇南部和滇西大部分地区属我国高强雷暴地区、中部和东部属于强雷暴地区

6、;最南端的西双版纳州勐腊县年平均雷暴日数高达123天。云南雷电灾害严重,据统计,全省每年发生雷电灾害事件300起以上,仅2005年造成人员伤亡142人, 经济损失约亿元。全国雷电分布第四章雷电对电气设备的影响直击雷雷电直接击在建筑物、其它物体、大地或防雷装置上,产生电效应、热效应和机械力 者。就是说雷电直接击中建筑物或暴露在空间的各种设备或大地或人身。它可能在数微秒 之内产生数万伏乃至数拾万伏的高压,产生火花放电,转化为巨大的热能和机械能,直接 摧毁建筑物、设备,或造成火灾,危及人身安全。巨大的雷电流沿引下线入地,会造成以 下三种影响:1 、巨大的雷电流在数微秒时间内泄放入地,使地电位迅速抬高

7、,造成反击事故,危 害人身和设备安全。2、雷电流产生强大的电磁波,在电源线和信号线上感应极高的脉冲电压。n3、雷电流流经电气设备产生极高的热量,造成火灾或爆炸事故。雷电波侵入由于雷电对架空线路或金属管道的作用,雷电波可能沿着这些管线侵入屋内危害人身 安全或损害设备。雷电虽然未直接击中建筑物或设备,但击中与本建筑物内、外各种设备 相连的管线,通过传导的方式经电阻性耦合将雷电波引入,危害人身、损害设备。电磁感应由于雷电流迅速变化在其周围空间产生瞬变的强电磁场,使附近导体上感应出很高的电动势。雷击放电时的瞬时雷击大电流将产生强大的雷击电磁脉冲,经感性耦合、容性耦 合或电磁辐射导致线路上产生脉冲过电压

8、和过电流,损坏相关设备。地电位反击因为没有采取等电位接地措施,由于与各种设备相关的各接地系统的冲击接地电阻及 所通过的雷击电流存在差异,导致地电位升高和不平衡,当电位差超过设备的抗电强度时, 即引起反击,损坏设备。开关过电压供电系统中的电感性和电容性负载开启或断开、地极短路、电源线路短路等,都有能 在电源线路上产生高压脉冲,其脉冲电压可达到线电压的倍,从而损坏设备。破坏效果与 雷击类似。由此产生的雷电过电压对电子设备的破坏主要有以下几个方面:1、损坏元器件(1)过高的过电压击穿半导体结,造成永久性损坏;(2)较低而更为频繁的过电压虽在元器件的耐压范围之内,亦使器件的工作寿命大大 缩短;(3)电

9、能转化为热能,毁坏触点、导线及印刷电路板,甚至造成火灾;2、设备误动作及破坏数据文件应该根据实际情况具体分析,采取相应的防雷保护措施,确保系统的安全工作。第五章项目内容及要求光伏方阵及箱变接防雷接地工程1 、光伏方阵及箱变接地装置接地电阻计算稿,包括:计算依据、各种相关参数选择、 冲击接地有效半径计算、工频接地电阻计算、冲击接地电阻计算等;2 、光伏方阵及箱变接地装置接地技术方案、施工图纸;3 、光伏方阵及箱变接地装置接地施工。光伏方阵接地系统1 、对太阳电池方阵,设置水平接地体和垂直接地体相结合的接地装置。将安全接地、 工作接地统一为一个共用接地装置。2 、沿太阳电池方阵四周采用-50X 5

10、热镀锌扁钢设置一圈水平接地带, 接地体埋设深 度不小于米。光伏支架之间采用扁钢连接后与方阵四周的水平接地体不少于 2点以上连 接,接地电阻值按不大于4Q考虑。箱式变电站接地装置至少引出 2处接地线与光伏方阵 接地装置可靠连接。3 、施工完成后,需测量每个方阵及箱变、逆变器的接地电阻、冲击电阻。4 、接地装置寿命要求达到25年以上。5 、采用的降阻材料应为低腐蚀性,对环境无污染。接地材料要求光伏方阵及箱变接地装置接地装置的水平接地线采用 -50x5热镀锌扁钢,引出地 面及引入建筑物内的接地线采用-50 X 5热镀锌扁钢,垂直接地极规格采用50 X 5热镀锌角 钢,长度L=米。第六章设计方案防雷类

11、别及电子信息系统雷电防护等级根据本项目重要性、使用性质、价值及发生雷电事故的可能性和后果,工程所涉及建 筑物均按第二类防雷建筑物进行设计;建筑物电子信息系统按B级雷电防护等级进行设计。光伏方阵及箱变防雷接地设计方案防直击雷设计按照相关防雷规范的要求,光伏方阵及箱应做直击雷防护的设计,并与接地装置相连 保护建筑物避免雷击损坏。防闪电涌设计按照相关防雷规范要求,光伏阵列的电源线路和信号线路都应采取防闪电电涌措施进 行防雷保护,并同时在电源进入时采取屏蔽措施。接地等电位连接按照相关规范要求,光伏阵列内所有设备的金属外壳、各类金属管道、金属线槽、建 筑物金属结构、防雷接地等均需等电位接地处理,并通过导

12、线连接地装置,消除各点之间 的电位差。光伏发电系统的相关设备浪涌过电压保护示意图光伏场区防直击雷方案光伏方阵设备主要有12个子方阵、12台箱式变电站。设备较多,占地面积较大。12 个子方阵形状各异,极不规则,太阳电池阵列安装在室外,当雷电发生时太阳电池方阵会 受到直击雷的侵入,其防护措施;根据地面光伏电场的特点,地面光伏发电场建筑和设备的防雷,参照建筑物防雷设 计规范要求,结合交流电气装置的过电压保护和绝缘配合 对雷电过电压的保护措施, 通常可采用独立避雷针、避雷带和避雷线作为防雷接闪器。由于独立避雷针和避雷线这类防雷接闪器会造成对光伏组件遮挡阴影阴影影响光伏组件发电功率甚至损坏光伏组件,故不

13、能在光伏发电场的东、南、西边 附近和场中间部分装置独立避雷针和避雷线接闪器,只能在不会对光伏组件造成阴影的场 地北面,装设独立避雷针接闪器。根据滚雷法确定单根避雷针的保护范围,可参照第二类 防雷采用滚球半径hr为45 m高,按计算公式:rx=式中rx 光伏组件最高处平面上的保护半径h 避雷针的高度,取45mhr 滚球半径,取45mhx 光伏发电场中的光伏组件最高件的高度,取 5m经计算45m高的单根避雷针在5m高的平面上保护范围半径仅为。即在场区北面沿 场边装设多根避雷针,也保护不了整个光伏发电场内建筑物和设备,即使再增加避雷针的 高度。但避雷针高度超过45m后(按第二类防雷建筑计算),避雷针

14、的保护范围并不与避 雷针的高度成正比的增加。当避雷针高度大于或等于150m以后,其防雷保护范围将与避雷针的高度无关。仅靠在场区北面沿场边装设多根避雷针也不能保护光伏发电场的全部, 而装设多根45150m的独立避雷针也是不现实的。故不宜在光伏发电场光伏组件区内和东、 南、西三面边缘采用装独立避雷针和避雷线作接闪器来防直击雷。光伏场区防直击雷措施利用光伏组件的金属边框作接闪器进行防直击雷;一是太阳能电池板四周铝合金框架与支架导通连接;二是所有支架均采用等电位连接接地后,太阳能电池板是由钢化玻璃两层间夹太阳电 池并抽取真空, 其本身就是绝缘体,四周是铝合金框架在直击雷发生时,其感应电荷主 要集中于铝

15、框架并泄入大地,从而使太阳能电池板得到保护,避免直击雷冲击而损坏。以光伏组件的金属边框作接闪器、金属支架作引下线和接地装置相接,以实现防直 击雷。因地面光伏发电场的光伏组件总的高度除大型聚光型光伏组件外,其他均在距地面 至5m之间。光伏发电场内的光伏组件遭受雷击与设备和建筑物的高度有关,根据有关国内、外资 料统计表明一个规律:建筑物和物体遭雷击的频率或次数,是与建筑物和物体的高度H的平方成正比。可按经验公式N 3X 10-5H2进行简单估值1,算出年落雷次数。光伏组件在 地面安装高度,如按5m计算,N约为万分之七点五。所以,地面光伏发电场内的建筑物和 设备遭受雷击的几率和次数都是很低的。光伏场区防雷接地方案光伏发电场内的交流系统接地,应遵循交流电气装置的接地 DL/T621的规定。光 伏发电场内的光伏组件,直流汇流箱、逆变器等设备的接地,除遵循DL/T621规定要求外, 特别是防雷接地,还应符合国标建筑物防雷设计规范 GB50057勺相关要求。地面光

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 建筑资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号