电荷耦合器件

上传人:re****.1 文档编号:508287697 上传时间:2024-02-02 格式:DOC 页数:8 大小:406.50KB
返回 下载 相关 举报
电荷耦合器件_第1页
第1页 / 共8页
电荷耦合器件_第2页
第2页 / 共8页
电荷耦合器件_第3页
第3页 / 共8页
电荷耦合器件_第4页
第4页 / 共8页
电荷耦合器件_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《电荷耦合器件》由会员分享,可在线阅读,更多相关《电荷耦合器件(8页珍藏版)》请在金锄头文库上搜索。

1、第4章 固体成像器件(CCD)。1 图像传感器简介 图像传感器发展 完成图像信息光电变换的功能器件称为光电图像传感器。光电图像传感器的发展历史悠久,种类很多。 早在934年就成功地研制出光电摄像管(onoscope),用于室内外的广播电视摄像。但是,它的灵敏度很低,信噪比很低,需要高于10 000l的照度才能获得较为清晰的图像。使它的应用受到限制。 147年制出的超正析像管(Imaie Orhico),的灵敏度有所提高,但是最低照度仍要求在 0l以上。 195年投放市场的高灵敏视像管(Vdicon)基本具有了成本低,体积小,结构简单的特点,使广播电视事业和工业电视事业有了更大的发展。 965年

2、推出的氧化铅视像管(Plumicon)成功地取代了超正析像管,发展了彩色电视摄像机,使彩色广播电视摄像机的发展产生一次飞跃。然而,氧化铅视像管抗强光的能力低,余辉效应影响了它的采样速率。 16年,又相继研制出灵敏度更高,成本更低的硒靶管和硅靶管。不断满足人们对图像传感器日益增长的需要。 年,美国贝尔实验室发现的电荷耦合器件(Charg ouped Dei,简称C)的原理,使图像传感器的发展进入了一个全新的阶段,使图像传感器从真空电子束扫描方式发展成为固体自扫描输出方式. CD本身就能完成光学图像转换、信息存贮和按顺序输出(称自扫描)视频信号的全过程。 它的自扫描输出方式消除了电子束扫描造成的图

3、像光电转换的非线性失真。即C图像传感器的输出信号能够不失真地将光学图像转换成视频电视图像。此外,与真空摄像器件相比,CD还有以下优点: (1) 体积小,重量轻,功耗低;耐冲击,可靠性高,寿命长; (2) 无象元烧伤、扭曲,不受电磁场干扰; (3) 象元尺寸精度优于1,分辨率高; () 基本上不保留残象(真空摄像管有1520的残象). () 视频信号与微机接口容易. CCD图像传感器目前已经成为图像传感器的主流产品。其应用研究成为当今高新技术的主流课题。它的发展推动了广播电视、工业电视、医用电视、军用电视、微光与红外电视技术的发展,带动了机器视觉的发展,促进了公安刑侦、交通指挥、安全保卫等事业的

4、发展。 图像传感器的基本原理 在光照射下或自身发光的景物经成像物镜成像在图像传感器的光敏面上,形成二维空间光强分布的光学图像,光电图像传感器完成将光学图像转变成二维“电气” 图像的工作。 组成一幅图像的最小单元称为像素或像元,像元的大小或一幅图像所包含的像元数决定了图像的分辨率,分辨率越高,图像的细节信息越丰富,图像越清晰,图像质量越高。即将图像分割得越细,图像质量越高。 CCD图像传感器用光敏单元分割。被分割后的电气图像经扫描才能输出一维时序信号。 扫描型图像传感器输出的视频信号可经A/D转换为数字信号(或称其为数字图像信号),存入计算机系统,并在软件的支持下完成图像处理、存储、传输、显示及

5、分析等功能。 本章主要讨论从光学图像到视频信号的转换原理,即图像传感器的基本工作原理和典型应用问题 . 4.2 D的工作原理1 电荷耦合器件的结构 在P型或N型硅单晶的衬底上生长一层厚度约为0。2微米的SiO2层,然后按一定次序沉积N个金属电极作为栅极,栅极间的间隙约25m,电极的中心距离50m ,于是每个电极与其下方的O2和半导体间构成了一个金属氧化物半导体结构,即MO结构。CCD线阵列CCD单元这种结构再加上输入、输出结构就构成了N位CCD。CD的特点是以电荷作为信号,不是以电流或电压作为信号。 CCD(hargeould evics,电荷耦合器件)图像传感器主要有两种基本类型,一种为信号

6、电荷包存储在半导体与绝缘体之间的界面,并沿界面进行转移的器件,称为表面沟道(简称为SC)器件;另一种为信号电荷包存储在距离半导体表面一定深度的体内,并在半导体体内沿一定方向转移的器件,称为体沟道或埋沟道器件(简称为BCC)。下面以CD为例讨论CCD的基本工作原理。电荷耦合原理与电极结构 构成CD的基本单元是MOS结构。如图85(a)所示,当金属电极加上正电压时,接近半导体表面的空穴被排斥,电子增多,在表面下一定范围内只留下受主离子,形成耗尽区(图8-1(b)所示)。该区域对电子来说是一个势能很低的区域,也称势阱。加在栅极上的电压愈高,表面势越高,势阱越深;若外加电压一定,势阱深度随势阱中电荷量

7、的增加而线性下降。电荷包形成:当有光照时,光生电子被收集到势阱中,形成电荷包。 一个M单元是一个光敏元电荷耦合: 设tt1时,已有信号电荷存贮在偏压为+10的号电极下的势阱里. 当t=t2时,电极和电极均加有+1电压,所形成的势阱就连通,电极下的部分电荷就流入电极下的势阱中。 当tt3时,电极上的电压由+10变为+2V,下面的势阱由深变浅,势阱内电荷全部移入电极下的深势阱中。 由此,从t1t ,深势阱从电极下移动到下面,势阱内的电荷也向右转移了一位。如果不断地改变电极上的电压,就能使信号电荷可控地一位一位地顺序传输。CCD的电极结构: CCD中电荷的存贮和传输是通过改变各电极上所加电压实现的。

8、按照加在电极上的脉冲电压相数来分,电极的结构可分为二相、三相、四相等结构形式. 三相电阻海结构二相硅铝交叠栅结构四电极结构:3.电荷的注入和检测CCD工作过程分三部分:信号输入、电荷转移和信号输出部分. 输入部分的作用是将信号电荷引入到CD的第一个转移栅下的势阱中。引入的方式有两种:光注入(摄像应用)和电注入(在滤波、延迟线和存储器应用情况)。 光注入:正面和背面光照式in=qNeoAtc式中:为材料的量子效率;q为电子电荷量; Ne为入射光的光子流速率;A为光敏单元的受光面积;c为光的注入时间. 电注入机构由一个输入二极管和一个或几个输入栅构成,它可以将信号电压转换为势阱中等效的电荷包。 输

9、入栅施加适当的电压,在其下面半导体表面形成一个耗尽层。如果这时在紧靠输入栅的第一个转移栅上施以更高的电压,则在它下面便形成一个更深的耗尽层。这个耗尽层就相当于一个“通道”,受输入信号调制的电荷包就会从输入二极管经过“通道”流人第一个转移栅下的势阱中,完成输入过程. 输出部分由输出二极管、输出栅和输出耦合电路组成,作用是将CD最后一个转移栅下势阱中的信号电荷引出。 浮置扩散放大器(DA)的读出方法是一种最常用的CCD电荷输出方法。它包括两个OFT,并兼有输出检测和前置放大的作用,它可实现信号电荷与电压之间的转换,具有大的信号输出幅度(数百毫伏),以及良好的线性和较低的输出阻抗. 输出电流d与注入

10、到二极管中的电荷量QS的关系 Qs=Idt 43电荷耦合器件的分类CD器件按结构可分为两大类:线阵CD和面阵CCD。1 线阵CD 最简单的线阵CCD是由一个输入二极管(ID)、一个输入栅(IG)、一个输出栅(OG)、一个输出二极管(OD)和一列紧密排列的OS电容器构成,如下图所示。(1)电极是金属的容易蔽光,即使是换成多晶硅,由于多层结构电极系统对入射光吸收、反射和干涉比较严重,因此光强损失大,量子效率低。 (2)电荷包转移期间,光积分在继续进行,使输出信号产生拖影。 将光敏区和转移区分开,构成单边传输结构和双边传输结构。 单排传输结构是光敏区通过其一侧转移栅与C移位寄存器相连。光敏元与CD转

11、移单元一一对应,二者之间设有转移栅,移位寄存器上覆盖有铝遮光,光敏区像元由光栅控制,如左下图所示. (b)光积分区输出转移栅 双排传输结构是将两列CD移位寄存器平行地配置在光敏区两侧,如右上图所示。 比单边结构型CC的转移次数少近一半,它的总转移效率亦大大提高,所以一般在大于256像素以上的线阵CCD摄像器件中,均采用双排传输结构。 2面阵CD 面阵CCD常见有两种:帧转移型(F)和行间转移型(1LT)FTC 帧转移结构包括光敏区、暂存区、水平读出寄存器和读出电路4个部分。 其结构特征是光敏区与暂存区分开,光敏区由并行排列垂直的电荷耦合沟道组成。各沟道之间用沟阻隔离,水平电极条覆盖在各沟道上。

12、光敏区与暂存区CCD的列数、位数均相同,不同之处是光敏区面积略大于暂存区的面积。 读出寄存器的每一个转移单元与垂直列电荷耦合沟道一一对应,如下图所示。 LTCCD 行间转移(内线转移)结构采用了光敏区与转移区相间排列方式。相当于将若干个单边传输的线阵CD图像传感器按垂直方向并排,底部设置一个水平读出寄存器,其单元数等于垂直并排的线阵CCD图像传感器的个数,如下图所示。 帧转移结构和行间转移结构各有其优缺点。帧转移结构简单,灵敏度高;行间转移结构适合于低光强,“拖影”小。 43 CCD的性能参数 电荷转移效率和转移损失率 电荷转移效率是表征CCD器件性能好坏的一个重要参数。设原有的信号电荷为 ,

13、转移到下一个电极下的信号电荷 ,其比值 称为转移效率没有被转移的电荷Q与原信号电荷之比称为转移损失率电荷转移效率与损失率的关系为 当信号电荷转移n个电极后的电荷为 时,总转移效率为一个CD器件如果总转移效率太低,就失去实用价值。 影响转移效率的因素很多,其中最主要因素还是表面态对信号电荷的俘获。 为此,采用“胖零”工作模式,所谓“胖零”工作模式就是让“零”信号也有一定的电荷来填补陷阱,这就能提高转移效率和速率。 2光谱响应率和干涉效应CC受光照的方式有正面受光和背面受光两种. 背面光照的光谱响应曲线与光电二极管相似,如下图中曲线2。如果在背面镀以增透膜减少反射损失而使响应率有所提高,如图中曲线

14、3. 正面照射时,由于CD的正面布置着很多电极,光线被电极多次反射和散射,一方面使响应率减低,另一方面多次反射产生的干涉效应使光谱响应曲线出现起伏,如图中曲线所示。 为了减小在短波方向多晶硅的吸收,用SnO2薄膜代替多晶硅薄膜做电极,可以减小起伏幅度。3 分辨率和调制传递函数(MTF) CCD由很多分立的光敏单元组成,根据奈奎斯特定律,它的极限分辨率为空间采样频率的一半,如果某一方向上的象元间距为p,则在此方向上象元的空间频率为1/(线/毫米),其极限分辨率将小于12p(线对/毫米)。 若用调制函数来评价CD的图像传递特性,那么,CCD的总调制函数MTF取决于器件结构(象元宽度、间距)所决定的几何MF1、载流子横向扩散衰减决定的TFD 和转移效率决定的MFT ,总的TF等与三者的乘积。并且总MTF随空间频率的提高而下降. 4 动态范围 动态范围表征器件能在多大照度范围内正常工作.一般定义动态范围是输出饱和电压和暗场时噪声的峰值电压之比. 一个好的CC器件,其动态范围可达:100500。 CC最小照度受噪声限制,最大照度受电荷处理容量的限制,增大动态范围的途径是降低暗

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号