现代测试技术及应用

上传人:公**** 文档编号:508111864 上传时间:2022-07-22 格式:DOCX 页数:10 大小:39.06KB
返回 下载 相关 举报
现代测试技术及应用_第1页
第1页 / 共10页
现代测试技术及应用_第2页
第2页 / 共10页
现代测试技术及应用_第3页
第3页 / 共10页
现代测试技术及应用_第4页
第4页 / 共10页
现代测试技术及应用_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《现代测试技术及应用》由会员分享,可在线阅读,更多相关《现代测试技术及应用(10页珍藏版)》请在金锄头文库上搜索。

1、现代测试技术及应用作业学号 2013010106姓名 刘浩峰专业 核技术及应用提交作业时间 2014 12 10无损检测中的CT重建技术1无损检测1.1无损检测概述无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。中国在1978年11月成立了全国性的无损检测学术组织中国机械工程学会无损检测分会。此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市和地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。无损检测缩写是NDT(或NDE,n

2、on-destructive examination),也叫无损探伤,是在不损害或不影响被检测对象使用性能的前提下,采用射线、超声、红外、电磁等原理技术并结合仪器对材料、零件、设备进行缺陷、化学、物理参数检测的技术。利用材料内部结构异常或缺陷存在引起的热、声、光、电、磁等反应的变化,以物理或化学方法为手段,借助现代化的技术和设备器材,对试件内部及表面的结构、性质、状态及缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化进行检查和测试。无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,无损检测的重要性已得到公认,主要有射线检验(RT)、超声检测(UT)、磁粉检测

3、(MT)、液体渗透检测(PT)、涡流检测(ECT)、声发射(AE)和超声波衍射时差法(TOFD)。1、 射线照相法(RT)是指用X射线或射线穿透试件,以胶片作为记录信息的器材的无损检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。工作原理是射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线强度也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。RT的定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。2、

4、超声波检测(UT)原理是通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。适用于金属、非金属和复合材料等多种试件的无损检测;可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为12mm的薄壁管材和板材,也可检测几米长的钢锻件;而且缺陷定位较准确,对面积型缺陷的检出率较高;灵敏度高,可检测试件内部尺寸很小的缺陷;并且检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。缺点是对具有复杂形状或不规则外形的试件进行超声检测有困难;并且缺陷的位置、取向和形状以

5、及材质和晶粒度都对检测结果有一定影响,检测结果也无直接见证记录。3、 磁粉检测(MT)原理是铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小。磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米级的裂纹)目视难以看出的不连续性;也可对原材料、半成品、成品工件和在役的零部件检测,还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检测,可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。磁粉检测不能检测奥氏体

6、不锈钢材料和用奥氏体不锈钢焊条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于20的分层和折叠难以发现。4、 渗透检测(PT)工作原理是零件表面涂上含有荧光染料或着色染料的渗透剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经去除零件表面多余的渗透液后,再在零件表面涂上显像剂,同样,在毛细管的作用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光源下(紫外线光或白光),缺陷处的渗透液痕迹被现实,(黄绿色荧光或鲜艳红色),从而探测出缺陷的形貌及分布状态。渗透检测可检测各种材料,金属、非金属材料;磁性、非磁

7、性材料;焊接、锻造、轧制等加工方式;具有较高的灵敏度(可发现0.1m宽缺陷),同时显示直观、操作方便、检测费用低。但它只能检出表面开口的缺陷,不适于检查多孔性疏松材料制成的工件和表面粗糙的工件;只能检出缺陷的表面分布,难以确定缺陷的实际深度,因而很难对缺陷做出定量评价,检出结果受到操作者的影响较大。5、 涡流检测(ECT)原理是将通有交流电的线圈置于待测的金属板上或套在待测的金属管外。这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感应交变电流,称为涡流。涡流的分布和大小,除与线圈的形状和尺寸、交流电流的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈的距离以及表面

8、有无裂纹缺陷等。因而,在保持其他因素相对不变的条件下,用探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化,进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或缺陷存在等信息。但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能反映试件表面或近表面处的情况。涡流检测时线圈不需与被测物直接接触,可进行高速检测,易于实现自动化,但不适用于形状复杂的零件,而且只能检测导电材料的表面和近表面缺陷,检测结果也易于受到材料本身及其他因素的干扰。6、 声发射(AE)通过接收和分析材料的声发射信号来评定材料性能或结构完整性的无损检测方法。材料中因裂缝扩展、塑性变形或相变等

9、引起应变能快速释放而产生的应力波现象称为声发射。这是一种新增的无损检测方法,通过材料内部的裂纹扩张等发出的声音进行检测。主要用于检测在用设备、器件的缺陷即缺陷发展情况,以判断其良好性。7、 超声波衍射时差法(TOFD)技术于20世纪70年代由英国哈威尔的国家无损检测中心Silk博士首先提出,其原理源于silk博士对裂纹尖端衍射信号的研究。在同一时期我国中科院也检测出了裂纹尖端衍射信号,发展出一套裂纹测高的工艺方法,但并未发展出现在通行的TOFD检测技术。TOFD技术首先是一种检测方法,但能满足这种检测方法要求的仪器却迟迟未能问世。详细情况在下一部分内容进行讲解。TOFD要求探头接收微弱的衍射波

10、时达到足够的信噪比,仪器可全程记录A扫波形、形成D扫描图谱,并且可用解三角形的方法将A扫时间值换算成深度值。而同一时期工业探伤的技术水平没能达到可满足这些技术要求的水平。直到20实际90年代,计算机技术的发展使得数字化超声探伤仪发展成熟后,研制便携、成本可接受的TOFD检测仪才成为可能。但即便如此,TOFD仪器与普通A超仪器之间还是存在很大技术差别。是一种依靠从待检试件内部结构(主要是指缺陷)的“端角”和“端点”处得到的衍射能量来检测缺陷的方法,用于缺陷的检测、定量和定位。1.2无损检测特点及发展方向无损检测有以下特点。第一是具有非破坏性,因为它在做检测时不会损害被检测对象的使用性能;第二具有

11、全面性,由于检测是非破坏性,因此必要时可对被检测对象进行100%的全面检测,这是破坏性检测办不到的;第三具有全程性,破坏性检测一般只适用于对原材料进行检测,如机械工程中普遍采用的拉伸、压缩、弯曲等,破坏性检验都是针对制造用原材料进行的,对于产成品和在用品,除非不准备让其继续服役,否则是不能进行破坏性检测的,而无损检测因不损坏被检测对象的使用性能。所以,它不仅可对制造用原材料,各中间工艺环节、直至最终产成品进行全程检测,也可对服役中的设备进行检测。常见无损检查目视检测范围:1、焊缝表面缺陷检查。检查焊缝表面裂纹、未焊透及漏焊等焊接质量。2、状态检查。检查表面裂纹、起皮、拉线、划痕、凹坑、凸起、斑

12、点、腐蚀等缺陷。3、内腔检查。当某些产品(如蜗轮泵、发动机等)工作后,按技术要求规定的项目进行内窥检测。4、装配检查。当有要求和需要时,使用同三维工业视频内窥镜对装配质量进行检查;装配或某一工序完成后,检查各零部组件装配位置是否符合图样或技术条件的要求;是否存在装配缺陷。5、多余物检查。检查产品内腔残余内屑,外来物等多余物。随着科技进步,一些看上去非常传统的无损检测方法,也已经发展出了许多新技术,譬如:射线检测传统技术是:胶片射线照相(X 射线和伽马射线)。新技术有:加速器高能X射线照相、数字射线成像(DR)、计算机射线照相(CR,类似于数码照相)、计算机层析成像(CT)、射线衍射等等。2.C

13、T重建技术电子计算机断层扫描即CT(Computed Tomography),是利用精确准直的X线束、射线、超声波等,与灵敏度极高的探测器一同围绕被测物体的某一部位作一个接一个的断面扫描,具有扫描时间快,图像清晰等特点,根据所采用的射线不同可分为:X射线CT(X-CT)、超声CT(UCT)以及射线CT(-CT)等。2.1CT重建技术的发展历史CT重建理论起源于1917年奥地利数学家J.Radon的研究论证结果,他在论文中给出 Radon变换和Radon反变换公式,指出二维、三维物体的图像能够通过无限多个射线投影确定,这一理论奠定了CT成像的数学理论基础1,但是限于当时的技术条件而未能实现。19

14、56 年美国科学家R.N.Bracewell将这一重建原理应用在了射线天文学,重建出太阳微波发射的图像2。1963年、1964年美国塔夫茨大学A.M.Cormack教授在应用物理杂志上发表题为“用线积分表示函数的方法及其在放射学上的应用”的系列论文,提出用数学手段进行图像重建的方法,并应用到一台简易模拟装置上。1971年,在英国EMI公司工程师G.Houndsfield的带领下,第一台真正的医用CT机EMI Markerl在Atkinson Morley医院诞生,并开始了医学临床应用,虽然它的第一次诊断耗时15个小时,但最终成功地为一名妇女诊断出了脑部囊肿,这台 CT 的成像矩阵为 8080,

15、分辨率为 3mm/pixel3。Houndsfield和Cormack这两位没有医学和生物学背景的科学家因为这项重大发明而获得了诺贝尔生理学和医学奖。CT从此开始进入历史舞台,大大丰富了对于人体内部器官进行无损检测的方法和手段,为疾病的早期正确诊断提供了科学而准确的依据。相比于X光摄影术,计算机断层成像技术具有对软组织分辨能力高、投影剂量小、动态范围大、无损检测和存储方便等优势。因为CT的投影数据100%只依赖于成像断面内物体的密度,不涉及其它截面,这样以来有效地排除了无关截面对成像断面图像的干扰,彻底解决了影像重叠问题,计算机数字化处理得出各种物质的CT数(Houndsfield数):CT数

16、=t-ww1000t是物质的衰减系数,w是水的衰减系数。从而可以将感兴趣区的某些细微的组织特性差异变换成可分辨的CRT上的灰度差异,对各部分组织性能参数做出定量表征。由于其具有非破坏性、非侵入性及不受试件、种类形状限制的特点,除了用于医疗诊断,在航空航天、工业、军事、石油等多个领域也凸显出很高的应用价值,人们通过环绕被测物体进行扫描,从而可以得知其内部构成、材质状况、损耗情况,是目前国际上公认的先进无损检测、无损探伤手段。同时由于CT所具有的高密度分辨率,它还被用于密封精密零件、电子芯片的反演,CT技术在人类的健康保健、经济发展、国防建设中发挥了突出的作用。按照光源的聚焦模式、探测器阵列规模以及扫描方式来划分,CT 至今已发展到第八代。最早的CT采用点光源、点探测器,扫描时间很长,第一代CT很快就被扇束光源、多点探测器所代替,大扇角扫描可以一次覆盖物体的一个截面,只需改变扫描角度,因此加快了扫描速度,目前扇束 CT 主要应用

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号