《八年级数学上册教案新人教版》由会员分享,可在线阅读,更多相关《八年级数学上册教案新人教版(90页珍藏版)》请在金锄头文库上搜索。
1、第十一章 全等三角形 111全等三角形教学目标:1了解全等形及全等三角形的的概念;2 理解全等三角形的性质;3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉;4 学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣。重点:探究全等三角形的性质难点:掌握两个全等三角形的对应边,对应角教学过程:观察下列图案,指出这些图案中中形状与大小相同的图形问题:你还能举出生活中一些实际例子吗?这些形状、大小相同的图形放在一起能够完全重合。能够完全重合的两个图形叫做全等形能够完全重合的两个三角形叫做全等三角形引导学生完成课本P
2、3思考:归纳:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。“全等”用“”表示,读作“全等于”两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如ABC和DEF全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作ABCDEF。把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角思考:如课本P3思考图11.1-1中,ABCDEF,对应边有什么关系?对应角呢?归纳:全等三角形性质:全等三角形的对应边相等;全等三角形的对应角相等。思考:(1)下面是两个全等的三角形,按下列图形的位置摆放,指
3、出它们的对应顶点、对应边、对应角(2)将ABC沿直线BC平移,得到DEF,说出你得到的结论,说明理由?(3)如图,ABEACD, AB与AC,AD与AE是对应边,已知:A=43,B=30,求ADC的大小。作业:P4习题11.1第1,2,3题。课题:112 三角形全等的判定(1)教学目标经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程掌握三角形全等的“边边边”条件,了解三角形的稳定性通过对问题的共同探讨,培养学生的协作精神教学难点三角形全等条件的探索过程一、复习过程,引入新知多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应
4、相等反之,这六个元素分别相等,这样的两个三角形一定全等二、创设情境,提出问题根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳三、建立模型,探索发现出示探究1,先任意画一个ABC,再画一个ABC,使ABC与ABC,满足上述条件中的一个或两个你画出的ABC与ABC一定全等吗? 让学生按照下面给出的条件作出三角形 (1)三角形的两个角分别是30、50 (2)三角形的两条边分别是4cm,6cm (3)三角形的一个角为30,条边为3cm 再通过画
5、一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等 出示探究2,先任意画出一个ABC,使ABAB,BCBC,CACA,把画好的ABC剪下,放到ABC上,它们全等吗? 让学生充分交流后,在教师的引导下作出ABC,并通过比较得出结论:三边对应相等的两个三角形全等四、应用新知,体验成功实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的鼓励学生举出生活中的实例给出例l,如下图ABC是一个钢架,ABAC,AD是连接点A与BC中点D的支架,求证ABDACD让学生独立思考后口头表达理由,由教师板演推理过程例2 如图是用圆规和直尺画已知角的平分线
6、的示意图,作法如下:以A为圆心画弧,分别交角的两边于点B和点C;分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D;画射线ADAD就是BAC的平分线你能说明该画法正确的理由吗?例3 如图四边形ABCD中,ABCD,ADBC,你能把四边形ABCD分成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试五、巩固练习:课本P8页的练习六、反思小结回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律七、布置作业课本P15习题112第1、2题课题:11.2 三角形全等的判定2)教学目标经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力在探索三角
7、形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理通过对问题的共同探讨,培养学生的协作精神教学难点指导学生分析问题,寻找判定三角形全等的条件知识重点应用“边角边”证明两个三角形全等,进而得出线段或角相等教学过程(师生活动)一、情境,引入课题 多媒体出示探究3:已知任意ABC,画ABC,使ABAB,ACAC,AA教帅点拨,学生边学边画图,再让学生把画好的ABC,剪下放在ABC上,观察这两个三角形是否全等二、交流对话,探求新知根据前面的操作,鼓励学生用自己的语言来总结规律: 两边和它们的夹角对应相等的两个三角形全等(SAS) 补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角
8、的两对边三、应用新知,体验成功出示例2,如图,有池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CDCA,连接BC并延长到E,使CECB连接DE,那么量出DE的长就是A、B的距离,为什么?让学生充分思考后,书写推理过程,并说明每一步的依据 (若学生不能顺利得到证明思路,教师也可作如下分析: 要想证ABDE, 只需证ABCDEC ABC与DEC全等的条件现有还需要)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决补充例题:1、已知:如图AB=AC,AD=AE,BAC=DAE 求证: ABDACE证明:BAC
9、=DAE(已知) BAC+ CAD= DAE+ CAD BAD=CAE 在ABD与ACE AB=AC(已知) BAD= CAE (已证) AD=AE(已知) ABDACE(SAS)思考:求证:1.BD=CE 2. B= C 3. ADB= AEC变式1:已知:如图,ABAC,ADAE,AB=AC,AD=AE. 求证: DACEABBE=DC B= C D= E BECD四、再次探究,释解疑惑出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么? 让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个
10、三角形不一定全等 教师演示:方法(一)教科书10页图11.2-7 方法(二)通过画图,让学生更直观地获得结论五、巩固练习课本P10页,练习1、2六、小结提高1判定三角形全等的方法;2证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构七、布置作业1课本P15页,习题112第3、4题2选作题:(1)小明做了一个如图所示的风筝,测得DEDF,EHFH,你能发现哪些结沦?并说明理由(2)如图,12,ABAD,AEAC,求证BCDE课题: 11.2 三角形全等的判定(3)教学目标探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判
11、别两个三角形是否全等经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维敢于面对教学活动中的困难,能通过合作交流解决遇到的困难教学重点理解,掌握三角形全等的条件:“ASA”“AAS”教学难点探究出“ASA”“AAS”以及它们的应用教学过程(师生活动)创设情境复习:师:我们已经知道,三角形全等的判定条件有哪些?生:“SSS”“SAS”师:那除了这两个条件,满足另一些条件的两个三角形是否也可能全等呢?今天我们就来探究三角形全等的另一些条件。探究新知:一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来同样大小的
12、新教具?能恢复原来三角形的原貌吗?1师:我们先来探究第一种情况(课件出示“探究5”)(1)探究5 先任意画出一个ABC,再画一个ABC,使ABAB,AA,BB(即使两角和它们的夹边对应相等)把画好的ABC剪下,放到ABC上,它们全等吗? 师:怎样画出ABC?先自己独立思考,动手画一画。在画的过程中若遇到不能解决的问题可小组合作交流解决生:独立探究,试着画ABC,(有问题的,可以小组内交流解决)(2)全班讨论交流我们又增加了种判别三角形全等的方法特别应注意,“边”必须是“两角的夹边”练习:已知:如图,AB=AC,A=A,B=C 求证:ABE ACD 例1. 已知:点D在AB上,点E在AC上,BE
13、和CD相交于点O,AB=AC,B=C。 求证:BD=CE 2探究6 师:我们再看看下面的条件: 在ABC和DEF中,AD,BE,BCEF,ABC与DEF全等吗?能利用角边角条件证明你的结论吗?师:看已知条什,能否用“角边角”条件证明师:你是怎么证明的?(根据学生的不同探究结果,进行不同的引导)师:从这可以看出,从这些已知条件中能得出两个三角形全等这又反映了一个什么规律? 师:生1很好,这条件我们可以简写成“角角边”或“AAS”,又增加了判定两个三角形全等的一个条件 强调“AAS”中的边是“其中一个角的对边” 多让几个学生描述,进一步培养归纳、表达的能力例2课本P12页例3。 师:从这道例题中,我们又得出了证明线段相等的又一方法,先证两线段所在的三角形全等,这样,对应边也就相等了探究7: (1)三角对应相等的两个三角形全等吗? 师:想想,怎样来探究这个问题?引导学生通过“画两个三角对应相等的三角形”,看是否一定全等,或“用两个同一形状但大小不同的三角